Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca)

DISSERTATION

zur Erlangung des akademischen Grades
Doktorin der Naturwissenschaften (Dr.rer.nat.)
an der Fakultät für Naturwissenschaften
und Mathematik der Universität Wien

DURCHFÜHRUNG
Mag. Sabine E. Hammer

LEITUNG
Prof. Mag. Dr. L. Salvini-Plawen

ORT
Institut für Zoologie, Universität Wien
Abteilung für Systematische Zoologie
und Entwicklungsgeschichte

Wien, im Oktober 2001
Wer ist weise?
Wer von jedermann lernt.
Wer ist stark?
Wer sich selbst überwindet.
Wer ist reich?
Wer sich mit dem Seinigen begnügt.
Wer ist achtbar?
Wer die Menschen achtet.

Talmud
INHALTSVERZEICHNIS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danksagung</td>
<td>5</td>
</tr>
<tr>
<td>Summary</td>
<td>6</td>
</tr>
<tr>
<td>Zusammenfassung</td>
<td>7</td>
</tr>
<tr>
<td>I. EINLEITUNG</td>
<td>8</td>
</tr>
<tr>
<td>I.1. Das Phylum Mollusca Cuvier, 1795</td>
<td>9</td>
</tr>
<tr>
<td>I.1.1. Unterstamm "Aculifera" (Stachelweichtiere)</td>
<td>12</td>
</tr>
<tr>
<td>I.1.2. Unterstamm Conchifera (Schalenweichtiere)</td>
<td>12</td>
</tr>
<tr>
<td>I.2. Die Klasse Bivalvia Linné, 1758</td>
<td>13</td>
</tr>
<tr>
<td>I.2.1. Allgemeine Charakteristika</td>
<td>14</td>
</tr>
<tr>
<td>I.2.2. Die Unterklassen der Bivalvia im Überblick</td>
<td>16</td>
</tr>
<tr>
<td>I.2.3. Wichtige Merkmale der Großgruppen der Bivalvia</td>
<td>17</td>
</tr>
<tr>
<td>I.2.4. Die Großgruppen der Pteriomorpha im Überblick</td>
<td>20</td>
</tr>
<tr>
<td>I.3. Phylogenie der Pteriomorpha</td>
<td>21</td>
</tr>
<tr>
<td>I.3.1. Glossar für die phylogenetische Methode</td>
<td>21</td>
</tr>
<tr>
<td>I.3.2. Molekulare Phylogenien der Pteriomorpha</td>
<td>24</td>
</tr>
<tr>
<td>I.3.3. Verwendete molekulare Marker: 18S und 28S rDNA</td>
<td>29</td>
</tr>
<tr>
<td>I.4. Zielsetzung der vorliegenden Arbeit</td>
<td>33</td>
</tr>
<tr>
<td>II. MATERIAL UND METHODEN</td>
<td>35</td>
</tr>
<tr>
<td>II.1. Untersuchte Tiere</td>
<td>36</td>
</tr>
<tr>
<td>II.2. Sequenzierung der 18S rDNA</td>
<td>40</td>
</tr>
<tr>
<td>II.2.1. DNA-Extraktion mittels Chelex® 100 Resin</td>
<td>40</td>
</tr>
<tr>
<td>II.2.2. Amplifikation der 18S rDNA mittels PCR</td>
<td>41</td>
</tr>
<tr>
<td>II.2.3. Sequenzierung</td>
<td>44</td>
</tr>
<tr>
<td>II.3. Sequenzierung der 28S rDNA</td>
<td>45</td>
</tr>
<tr>
<td>II.3.1. DNA-Extraktion nach dem CTAB-Protokoll</td>
<td>45</td>
</tr>
<tr>
<td>II.3.2. Amplifikation der 28S rDNA mittels PCR</td>
<td>46</td>
</tr>
<tr>
<td>II.3.3. Klonierung der 28S rDNA</td>
<td>47</td>
</tr>
<tr>
<td>II.4. Phylogenetische Analyse</td>
<td>51</td>
</tr>
<tr>
<td>II.4.1. Verwendete Programme und Parameter</td>
<td>51</td>
</tr>
<tr>
<td>II.4.2. Verwendete Taxa in der phylogenetischen Analyse</td>
<td>53</td>
</tr>
<tr>
<td>II.4.2.1. 18S rDNA-Datensatz</td>
<td>53</td>
</tr>
<tr>
<td>II.4.2.2. 28S rDNA-Datensatz</td>
<td>56</td>
</tr>
<tr>
<td>II.4.2.3. 18S+28S rDNA-Datensatz</td>
<td>57</td>
</tr>
</tbody>
</table>
III. ERGEBNISSE .. 59

III.1. 18S rDNA-Phylogenie der pteriomorphen Bivalvia .. 60
 III.1.1. Erhaltene 18S rDNA-Sequenzen ... 60
 III.1.2. Phylogenetische Beziehungen höherer Taxa .. 61
 III.1.3. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 65

III.2. 28S rDNA-Phylogenie der pteriomorphen Bivalvia .. 68
 III.2.1. Erhaltene 28S rDNA-Sequenzen ... 68
 III.2.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 69

III.3. 18S+28S rDNA-Phylogenie der pteriomorphen Bivalvia .. 73
 III.3.1. Erhaltene 18S+28S rDNA-Sequenzen .. 73
 III.3.2. Phylogenetische Beziehungen der Pteriomorpha ... 74

IV. DISKUSSION ... 78

IV.1. Phylogenie der Pteriomorpha ... 79
 IV.1.1. Phylogenetische Beziehungen höherer Taxa .. 79
 IV.1.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 82

IV.2. Aussagekraft der molekularen Daten .. 85
 IV.2.1. Sequenzalignments ... 85
 IV.2.2. Transitions/Transversionsraten ... 86
 IV.2.3. Substitutionsraten ... 87

IV.3. Kongruenz zwischen morpholog. und molek. Daten ... 89

V. ANHANG ... 93

V.1. Verwendete Lösungen und Chemikalien ... 94
 V.1.1. Enzyme, Puffer und Lösungen ... 94
 V.1.2. Verwendete Chemikalien und Enzyme .. 95

V.2. Verzeichnisse ... 97
 V.2.1. Zitierte Literatur ... 97
 V.2.2. Verwendete Abkürzungen ... 101
 V.2.3. Verzeichnis der Abbildungen und Tabellen ... 104
 V.2.4. 28S rDNA-Datenset (aktualisiert) ... 106
 V.2.5. Sequenzierte Taxa ... 108
 V.2.6. Bildtafeln der sequenzierten Pteriomorpha .. 109

V.3. Curriculum vitae .. 115

V.4. Publikationen ... 118
DANKSAGUNG

Allen voran möchte ich mich bei meinen Eltern dafür bedanken, daß sie jederzeit ein offenes Ohr für meine Probleme und Sorgen hatten und nach wie vor haben. Andererseits aber auch immer meine Erfolgserlebnisse mit der für sie typischen Begeisterung mit mir teilen.

Allen Kolleginnen und Kollegen der Abteilung für Systematische Zoologie und Entwicklungsgeschichte danke ich für die vielfältigen Erscheinungsformen ihrer Unterstützung während meines Doktoratsstudiums - sie wissen schon, was alles damit gemeint ist! Weiters gilt mein Dank allen Kolleginnen und Kollegen am Institut für Zoologie für die gute Zusammenarbeit.

Abschließend gilt mein ganz besonderer Dank Katrina, die maßgeblich daran beteiligt war, daß die Zeit des „Zusammenschreibens“ eine doch sehr angenehme war. Für die gemeinsame Zeit während der praktischen Arbeit möchte ich mich bei Silvia bedanken. Tja, und bezüglich all meiner Freundinnen und Freunden kann ich nur sagen: Ich bin einfach froh, daß es Euch gibt!

Diese Arbeit wurde unterstützt vom Fonds zur Förderung der wissenschaftlichen Forschung (FWF), Österreich, und trägt die Projektnummer P11846-GEN, bewilligt für Ao. Univ.-Prof. Dr. Gerhard Steiner.
SUMMARY

Phylogenetic studies on the Pteriomorpha, a major division of the Bivalvia with Ordovician origins, produced contradictory results, because of convergent and parallel evolution in numerous morphological characters. In the present study, two ribosomal data sets are used to elucidate pteriomorph relationships with molecular characters, expected to be less prone to convergence due to similar life styles. The 18S rDNA data set contains 72 pteriomorph and 28 molluscan outgroup sequences; the 28S rDNA (domains D1-D3) data set contains 33 pteriomorph and 2 protobranch outgroup sequences; whereas the 18S plus 28S rDNA data set in combination consists of 30 pteriomorph and 2 protobranch outgroup sequences. Parsimony, maximum-likelihood (ML), spectral analysis methods are used for phylogenetic analysis. Branch support is calculated by bootstrap, decay, and puzzle indices.

The relative rate test returns significantly lower rates in the 18S rDNA for the Pteriomorpha than for all the other molluscan groups; rates comparison among the pteriomorph families shows higher values for the 28S rDNA, but only moderate correlation between the genes. In general, the branches of family-group taxa have strongest support. The analysis of the 18S data yield 106946 most parsimonious trees (MPT), however, the strict consensus tree shows only a single polytomy for the major groups. The 28S data yield two MPT with the only polytomy being within the Arcoidea. The two genes support similar topologies differing only in the arrangement of the basal groups Mytiloidea and Arcoidea. These uncertainties become also apparent in the ML analyses, both in the branching order of these two groups and in very short branch lengths in this area. The 18S plus 28S rDNA combined data return one MPT that shows the same topology as the ML-tree of the 28S data set, but has higher branch support.

Parallel or convergent evolution of morphological characters is discussed under the topology of the combined molecular data. Finally, the pteriomorph data set is an example for the advantages of combining two molecular marker systems yielding increased resolution and branch support.
ZUSAMMENFASSUNG

Der vorliegende Datensatz zeigt, daß die Verwendung von zwei molekularen Markersystemen in Kombination die Auflösung und die Robustheit der phylogenetischen Rekonstruktion verbessert.
I. EINLEITUNG

I.1. Das Phylum Mollusca Cuvier, 1795 ... 9
I.1.1. Unterstamm *Aculifera* (Stachelweightiere) .. 12
I.1.2. Unterstamm Conchifera (Schalenweichtiere) .. 12

I.2. Die Klasse Bivalvia Linné, 1758 ... 13
I.2.1. Allgemeine Charakteristika ... 14
I.2.2. Die Unterklassen der Bivalvia im Überblick .. 16
I.2.3. Wichtige Merkmale der Großgruppen der Bivalvia 17
I.2.4. Die Großgruppen der Pteriomorpha im Überblick 20

I.3. Phylogenie der Pteriomorpha .. 21
I.3.1. Glossar für die phylogenetische Methode .. 21
I.3.2. Molekulare Phylogenie der Pteriomorpha .. 24
I.3.3. Verwendete molekulare Marker: 18S und 28S rDNA 29

I.4. Zielsetzung der vorliegenden Arbeit ... 33
I.1. Das Phylum Mollusca Cuvier, 1795

Zwar sind Mollusken bilateralsymmetrische Organismen, dennoch weisen sie gelegentlich eine Tendenz zur Asymmetrie auf, die bei den Gastropoda (Schnecken) den gesamten Körper umfaßt. Die Ontogenie verläuft meist über eine Spiralfurchung und die Bildung einer pelagischen Larve (Hüllglockenlarve - z.B. Solenogastres; Pseudotrochophora - z.B. Polyplacophora; plaktotrophe Veliger - z.B. Gastropoda). Die Ausnahme bei den Mollusca bilden die Cephalopoda, da bei diesen primär keine Larve mehr gebildet wird, sondern eine direkte Entwicklung stattfindet.

Das Konzept der Monophylie der jeweiligen fünf Klassen der Mollusca, die innerhalb der Conchifera (Schalenweichtiere) zusammengefaßt werden, scheint gegenwärtig sehr breiten Konsens zu finden (Haszprunar 2000). Über den Status und die phylogenetische Position der Klassen Caudofoveata (Schildfüßer), Solenogastres (Furchenfüßer) und Polyplacophora (Käferschnecken), die unter der Bezeichnung *Aculifera* (Stachelweichtiere) vereinigt werden, herrschen nach wie vor rege Auseinandersetzungen (Haszprunar 2000).

\(^1\) Unter „Spiralia“ versteht man die Protostomia-Gruppen mit Spiralfurchung.
I.1.1. Unterstamm *Aculifera* (Stachelweichtiere)

- Klasse Caudofoveata (Schildfüßer)
 ca. 120 Arten
- Klasse Solenogastres (Furchenfüßer)
 ca. 230 Arten
- Klasse Polyplacophora (Käferschnecken)
 ca. 750 Arten

I.1.2. Unterstamm Conchifera (Schalenweichtiere)

- Monoplacophora (Tryblidia - Urmützenschnecken, Napfschaler)
 ca. 20 Arten
- Klasse Gastropoda (Schnecken)
 ca. 43 000 Arten
- Klasse Cephalopoda (Kopffüßer)
 ca. 650 Arten
- Klasse Scaphopoda (Grabfüßer)
 ca. 600 Arten
- **Klasse Bivalvia (Muscheln)**
 ca. 10 000 Arten
I.2. Die Klasse Bivalvia Linné, 1758

Die nachstehende Abbildung 3 (Kükenthal 1991) zeigt einen Mediosagittalschnitt durch eine formolgehärtete Miesmuschel Mytilus edulis (Mytilidae, Pteriomorpha). Die abgebildeten anatomisch-morphologischen Charakteristika von Mytilus edulis sollen hier stellvertretend für die Bivalvia, und hier in erster Linie für die Pteriomorpha (Bivalvia, Mollusca) stehen.

I.2.1. Allgemeine Charakteristika

Weichkörper, Fuß, Mundöffnung, Schalenhälften

Der **Weichkörper** ist beiderseits ganz von herabhängenden Mantelfalten umhüllt, die Mantelränder beinhalten oft Taster oder auch Augen (z.B. bei den Pectinidae). Die Ränder können aber auch verwachsen sein und lediglich Öffnungen der Siphonen und für den Fuß aussparen. Die Mantelhöhle ist beiderseits langgestreckt (peripedal) und darin befinden sich die Kiemen. Bei grabenden und bohrenden Arten ist der hintere Mantelabschnitt zu zwei oder (durch Verwachsung) einer langen, vorstreckbaren Röhre (Sipho) ausgezogen.

Der **ventrale Fuß** ist austreckbar und kann eine beil-, zungen- oder wurmförmige Form annehmen, wobei sich bei festsitzenden und schwimmenden Arten der Fuß in Rückbildung befindet. An der hinteren Basis bleibt bei den Pteriomorpha oftmals das erstarrte Festheftungssekret (Byssus - „Bart”) zeitlebens erhalten.

Die **Mundöffnung** ist meist von Anhangsorganen (Lappen, Palpen) umgeben.

Alter, Fortpflanzung, Ernährung, Freßfeinde

Bivalvia sind mehrjährige Organismen, die sehr unterschiedliche *Lebensalter* erreichen können. So weisen z.B. Austern (Ostreidae, Pteriomorpha) eine Lebensspanne von 20 Jahren auf, Flußperlmuscheln (Margaritiferidae, Palaeoheterodonta) sowie Seedatteln (*Lithophaga* sp., Mytilidae, Pteriomorpha) können ein Alter von über 60 Jahren erreichen und bei den Riesenmuscheln (Tridacnidae, Heterodonta) konnten Individuen gefunden werden, die über 100 Jahre alt waren. Das Wachstum der Muscheln ist an den Zuwachsstreifen der Schalen erkennbar.

Bezüglich der **Fortpflanzung** handelt es sich bei den Bivalvia meist um getrenntgeschlechtliche Tiere, denn Zwitter werden selten festgestellt. Die Keimzellen (Eier und Samen) werden frei ins Wasser abgegeben. Die Nachkommenschaft kann enorm groß sein (*Ostrea* sp. – Auster ca. 1 Million), wobei der
Großteil während des pelagischen Larvenlebens zugrunde geht.

Entwicklung, Verbreitung

Gegenwärtig sind etwa 10 000 Arten bekannt, die überwiegend den marinen Lebensraum besiedeln, einige Familien leben auch im Süßwasser. Das *Vorkommen* ist benthisch, d.h. auf allen Böden der Gezeitenzone bis in die Tiefsee, besonders artenreich sind Sedimentböden (Sand, Schlamm). Häufig bilden sich unter nahrungsreichen Wasserschichten regelrechtes Massenvorkommen. Nur die Larven und Planctomya leben meist kurze Zeit pelagisch.

Artbestimmung

Neben zahlreichen Weichkörpermerkmalen werden vor allem Schalenmerkmale und die Kiemenform für die Lösung von systematischen Fragestellungen herangezogen.

Kommerzielle Bedeutung (Beispiele) von Muscheln:

Pteriomorpha

- Miesmuscheln (*z.B. Miesmuschel Mytilus edulis* - Mytilidae)
- Seedatteln (*z.B. Steindattel Lithophaga lithophaga* - Mytilidae)
- Austern (*z.B. Tafel-Auster Ostrea edulis* - Ostreidae)
- Kammschel (*z.B. Pilgermuschel Pecten jacobaeus* - Pectinidae)
- Archenmuscheln (*z.B. Arche Noah Arca noae* - Arcidae)

Heterodonta

- Venusmuscheln (*z.B. Warzige Venusmuschel Venus verrucosa* - Veneridae)
- Herzmuscheln (*z.B. Gemeine Herzmuschel Cerastoderma edule* - Cardiidae)
I2.2. Die Unterklassen der Bivalvia im Überblick

Unterklassierung

Unterklassierung Protobranchia
- Ordnung Ctenidobranchia
 - Überfamilie Nuculanoidea
- Ordnung Palaeobranchia
 - Überfamilie Solemyoidea

Unterklassierung Autobranchia
- Ordnung Pteriomorpha
 - Unter-Ordnung Arcina
 - Überfamilie Arcoidea
 - Unter-Ordnung Mytilina
 - Überfamilie Mytiloidea
 - Unter-Ordnung Pteriina
 - Überfamilie Anomioidea
 - Limoidea
 - Ostreoidea

1.2.3. Wichtige Merkmale der Großgruppen der Bivalvia
(Salvini-Plawen 1983)

Ctenidiobranchia (Protobranchia partim, Palaeotaxodonta)
 Kiemen: doppelt blättrig-gefiederte Kiemen (Ctenidien), dienen nur der Atmung (Abb. 4)
 Ernährung: mittels großer Mundlappen, welche einen langen, tasterartigen Anhang besitzen
 Nuculanoida

Palaeobranchia (Protobranchia partim, Cryptodonta)
 Kiemen: doppel blättrig-gefiederte, blattförmig senkrecht ausgerichtete Kiemen; dienen auch der
 filtrierenden Ernährung (Abb. 4)
 Solemyoidea

Autobranchia (Lamellibranchia)
 Kiemen: sind durch Verlängerung der Achse fadenförmig ausgezogene, dicht angeordnete
 Seitenfieder, die zu zwei Paar blattförmigen Organen umgebildet sind; dienen auch der
 filtrierenden Ernährung
 Andere Merkmale: Mundlappen klein; primär Formen des oberen Litorals; Larven mit
 Exkretionsorganen

Abb. 4: Kiemen-Typen bei den Bivalvia (Mollusca).
Aus Westheide & Rieger (1996, p. 322)

- Ctenidiobranchia
doppelfiedrige Kiemen
 - protobranch

- Septibranchia
einfaches, durchbrochenes Querseptum
 - septibranch

- Pteriomorpha
fädis ausgezogene Kiemen
 - filibranch

- Heterodonta
netzartige Blattkiemen
 - eulamellibranch

Pteriomorpha (Filibranchia i.w.S.) – Abb. 4
 Kiemen: Kiemenfäden sind untereinander nur durch Wimpern lose miteinander verbunden
 (wenige Gewebebrücken) und einfach-einschenkelig oder umgebogen-zweischenkelig bzw.
 gefaltet und ungleichartig ausgebildet
 Andere Merkmale: ohne Siphonen; mit Osphradien und Abdominal-Sinnesorganen; meist mit
 Byssus und epibenthisch lebend
Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 18

Mytilina

Mytiioidea (Isofilibranchia)

Schale: gleichklappig und nach vorne verjüngt, innere Schalenschicht perlmuttrig
Schloßrand: meist zahnlos (dysodont) – Abb. 5
Schließmuskel: vorderer Schließmuskel kleiner bis fehlend
Fuß: fingerförmig
Kiemenfäden: einfach (filibranch)
Zementation: mit mehrfädigem Byssus angeheftet und/oder in Kalkstein ätzend

Arcina

Arcoidea (Eu- oder Neotaxodonta, Pseudoctenodonta)

Schale: meist gleichklappig, innere Schalenschicht ohne Perlmutt
Schloßrand: zahlreiche, kammartig zueinander parallel reihig angeordnete Zähne (taxodont) – Abb. 5
Schließmuskel: zumeist wenig verschieden voneinander
Kiemenfäden: einfach
Zementation: Byssus einfach oder fehlend

Pteriina (Pseudolamellibranchia i.w.S., Anisomyaria partim, Leptodonta partim)

Schale: verschieden-gestaltig, teils ungleichklappig (inaequivaclve); innere Schalenschicht ohne oder mit Perlmutt
Schloßrand: meist zahnlos (Abb. 5)
Schließmuskel: vorderer Schließmuskel in Rückbildung oder fehlend
Kiemenfäden: einfach oder gefaltet/ungleichartig
Zementation: meist mit Byssus oder durch Kalkabscheidung festsetzend
Anomioidea, Limoidea, Ostreoidea, Pectinoidea,
Pinnoidea, Plicatuloidea, Pterioidea

Heterodonta (Eulamellibranchia partim) – Abb. 4

Schloßrand: zahnarm mit wenigen, wechselständigen Haupt- und Seitenzähnen (heterodont) oder zahnlos (Abb. 5)
Schließmuskel: meist gleichstark ausgebildet
Kiemen: Kiemenfäden sind zweischenkellig und zu beiderseits zwei durchbrochenen netzartigen Blattkiemen verwachsen
Andere Merkmale: oft mit äußerem Ligament und mit Siphonen

Veneroidea (Heterodonta i.e.S.)

Schale: gut ausgebildet und gleichklappig
Schloßrand: typisch heterodont mit meist vorderen und hinteren Seitenzähnen (Abb. 5)

Andere Merkmale: vielfach mit Byssus, Siphonen meist frei

Myoidea (*Adapedonta*)

Schale: dünnwandig mit schwach entwickelter bis fehlender Schlossplatte; keine Perlmutter-Einschicht

Andere Merkmale: Siphonen vereinigt, meist mit gemeinsamer Bedeckung; grabende und bohrende Tiere

Anomalodesmata (*Eulamellibranchia partim*) – Abb. 4

Kiemen: netzartige Blattkiemen (*eulamellibranch*), die selten durch ihre septumartige seitliche Anheftungsmembran ersetzt sind (*pseudo-septibranch*)

Schale: zumeist ungleichkantig und dünn; meist mit innerer Perlmutter-Einschicht _Schloßrand_: zahnarm bis zahnlos (Abb. 5)

Schließmuskel: annähernd gleich groß

Andere Merkmale: Ligament meist mit innerem Knorpel (*Resilium*), der einen leistenartigen Schalenfortsatz (*Lithodesma*) enthält; mit Siphonen und Mantelbucht; teils mit Byssus

Pandoroidea

Septibranchia (*Verwachsenkiemen*) – Abb. 4

Kiemen: ohne echte Kiemen

Schale: gleichkantig; mit oder ohne Perlmutter

Schloßrand: zahnarm oder zahnlos (Abb. 5)

Andere Merkmale: Mantelraum ist mit einem cerebral (!) innervierten, horizontal durchlöcherten Septum versehen, welches durch Pumpbewegungen die Nahrung einbringt; mit zumeist kurzen Siphonen; Carnivoren

Poromyoidea
Cuspidarioidea

Palaeoheterodonta
 Trigonioidea
 Unionoidea

1.2.4. Die Großgruppen der Pteriomorpha im Überblick

- Arcoidea
 - Arcidae
 - Glycymerididae
 - Neotiidae
- Mytiloidea
 - Modiolinae
 - Mytilinae
 - Crenellinae
 - Lithophaginae
 - Bathymodiolinae
- Anomioidea
 - Anomiidae
 - Dimyidae
- Ostreoidea
 - Gryphaeidae
 - Ostreidae
- Pectinoidea
 - Pectinidae
 - Spondylidae
- Pinnoidea
 - Pinnidae
- Plicatuloidea
 - Plicatulidae
- Pterioidea
 - Isognomonidae
 - Malleidae
 - Pteriidae
- Limoidea
 - Limidae

\(^2\) Statt dem Begriff „Überfamilie“ wird auch die Bezeichnung „Familiengruppe“ verwendet (siehe Kapitel II.1.).
I.3. Phylogenie der Pteriomorpha

I.3.1. Glossar für die phylogenetische Methode

Art

Stammart
♦ Art, die sich durch Speziation (Artspaltung) in zwei Folgearten auflöst (= Schwesternarten) und damit aufhört zu existieren. Aus den Folgearten können durch Spaltungen weitere Arten hervorgehen. Die Stammart kann aber auch - mehr oder weniger identisch - weiterhin bestehen, sodaß aus einer isolierten Population eine zweite Art entsteht.

Außengruppe
♦ Umfaßt alle rezenten und fossilen Taxa außerhalb der betrachteten Gruppe.

Anagenese
♦ Transformation von Merkmalseigenschaften in Evolutionslinien. Im Gegensatz zur Cladogenese, die den Prozeß der Entstehung neuer Merkmalseigenschaften oder neuer Merkmale in der Folge von Artspaltungen bezeichnet.

Homologie
♦ Übereinstimmung in Merkmalen bei unterschiedlichen Taxa, die nicht zufällig ist, sondern sich auf die genetische Information in einer gemeinsamen Stammart zurückführen läßt.

Radiation (adaptive)
♦ Vielfache Abwandlung eines Grundmusters durch relativ schnell aufeinander folgende Artspaltungen und Anpassungen an verschiedene Nischen.

Schwesterngruppe (Adelphotaxon)
♦ Zwei Taxa, die eine nur ihnen gemeinsame Stammart besitzen, sind Schwesterngruppen.

Taxon, pl. Taxa

Apomorphie
♦ Abgeleitetes Merkmal (oder Merkmalsausprägung), d.h. evolutiv neue Eigenschaft oder Struktur, ein Spezialhomologon einer Gruppe bzw. Art, oder ein sekundär fehlendes Merkmal.

Autapomorphie
♦ Abgeleitetes Merkmal, das auf ein Taxon bzw. eine Gruppe beschränkt ist. Monophyla werden durch mindestens eine Autapomorphie begründet.

Synapomorphie
Plesiomorphie
- Ursprüngliches Merkmal (oder Merkmalsausprägung), d.h. evolutiv alte Eigenschaft oder Struktur, das nicht auf ein Taxon bzw. eine Gruppe beschränkt ist. Ein homologes Merkmal, das schon längst existiert.

Symplesiomorphie
- Ursprüngliches Merkmal, das auch außerhalb eines Monophylums auftritt. Es kann nicht zur Phylogenieforschung herangezogen werden, da es alle Taxa der untersuchten Gruppe besitzen.

Konvergenz
- Übereinstimmung in Merkmalen bei unterschiedlichen Taxa, die sich nicht auf die genetische Information in einer gemeinsamen Stammart zurückführen lassen, d.h. die unabhängig voneinander entstanden sind.
Monophylie
- In einer monophyletischen Gruppe sind alle Nachfahren einer gemeinsamen Stammart enthalten. Die darin enthaltenen Teilgruppen sind durch **synapomorphe** Merkmale gegenüber den anderen Gruppen abgegrenzt.

Paraphylie
- Paraphylie liegt vor, wenn eine Gruppe gebildet wurde, die gleiches organisatorisches Niveau und **sympleiomorphe** Merkmale besitzt. Eine paraphyletische Stadiengruppe enthält nicht alle Nachfahren einer Stammart.

Polyphylie
- Polyphyltische Gruppen sind nicht durch homologe, synapomorphe, sondern durch **konvergente** Merkmale gekennzeichnet. Die Gruppierung erfolgt nicht nach den Regeln der phylogenetischen Methode und spiegelt daher nicht die Verwandtschaftsverhältnisse wieder.

Monophylie
Alle Nachkommen einer Ausgangsgruppe.

Paraphylie
Enthält nicht alle Gruppen eines gemeinsame Vorfahrens.

Polyphylie
Das gemeinsame Merkmal ist konvergent, d.h. unabhängig voneinander zweimal entstanden.
I.3.2. Molekulare Phylogenien der Pteriomorpha

![Diagramm der Bivalvia Evolution](image)

Die fossilen Befunde zeigen weiters, daß die Pteriomorpha im frühen Ordovizium, d.h. vor ca. 510 Millionen Jahren, zum ersten Mal in Erscheinung traten, nachdem sie sich von den Heteroconchia abgespalten hatten (Abb. 6). Die ältesten Pteriomorpha dürften mytiloide, arcoide und pterioide Formen gewesen sein, die weitere Radiationen im späten Devon sowie in der Trias und im Paläozän durchliefen (Carter 1990) (Tab. 1 und Abb. 7).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Känozoikum</td>
<td>Quartär</td>
<td>Pleistozän</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pliozän</td>
<td>3,4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miozän</td>
<td>17,5</td>
<td>22,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oligozän</td>
<td>14,5</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eozän</td>
<td>17</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paläozän*</td>
<td>11</td>
<td>65</td>
</tr>
<tr>
<td>Mesozoikum</td>
<td>Kreide</td>
<td></td>
<td>70</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Jura</td>
<td></td>
<td>55</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Trias*</td>
<td></td>
<td>35</td>
<td>225</td>
</tr>
<tr>
<td>Paläozoikum</td>
<td>Perm</td>
<td>Oberkarbon</td>
<td>45</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Karbon</td>
<td>Unterkarbon</td>
<td>20</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Devon*</td>
<td></td>
<td>60</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>Silur</td>
<td></td>
<td>40</td>
<td>445</td>
</tr>
<tr>
<td></td>
<td>Ordovizium*</td>
<td></td>
<td>65</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>Kambrium</td>
<td></td>
<td>70</td>
<td>580</td>
</tr>
<tr>
<td>Eozoikum</td>
<td></td>
<td></td>
<td>500</td>
<td>1080</td>
</tr>
</tbody>
</table>

Bei phylogenetischen Analysen beruhend auf 28S rDNA-Sequenzen standen bislang nur die Familien Gryphaeidae, Ostreinae, Lophinae und Crassostreinae der Ostreoidea (Littlewood 1994; Ó Foighil & Taylor 2000) sowie einige Familien der veneriden Heterodonta (Park & Ó Foighil 2000) im Mittelpunkt des Interesses.

4) Die genetische Information von Pro- und Eukaryonten ist in Riesenmolekülen der Desoxyribonucleinsäure (DNS, international DNA – Desoxyribonucleic Acid) gespeichert.

Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 28

Gruppen. Bei Salvini-Plawen & Steiner (1996) bilden die Pteriomorpha eine Schwestergruppe zu den Trigonioidea (Palaeoheterodonta) und stehen an der Basis der monophyletischen Autolamellibranchia.

I.3.3. Verwendete molekulare Marker: 18S und 28S rDNA

Ribosomale Gene spielen bei der Expression von proteinkodierenden Genen bzw. bei der anschließenden Proteinbiosynthese in jedem Organismus eine entscheidende Rolle. Jene Organellen in der Zelle, an welchen die Übersetzung der zuvor im Zellkern transkribierten messenger-RNA (mRNA = Boten-RNA) stattfindet, werden als Ribosomen bezeichnet. Diese sind entweder mit der äußeren Membran des rauen Endoplasmatischen Reticulums (ER) assoziiert oder frei im Cytoplasma der Zelle lokalisierter. Ribosomen sind komplex aufgebaute Strukturen, die aus zwei unterschiedlich großen Untereinheiten bestehen, an deren Aufbau sowohl Proteine wie auch ribosomale RNA be

5) Ribonukleinsäure (RNS, international RNA – Ribonucleic Acid)
Hierzu zählt zum Einen das Spleißen, wobei die ETS- und ITS-Regionen entfernt werden, und zum Anderen die komplexen Faltungsvorgänge der RNA-Stränge. Letztere führen zu jenen Sekundärstrukturen der verschiedenen rRNAs (Abb. 11 und 12), die zusammen mit den ribosomalen Proteinen für den funktionellen dreidimensionalen Aufbau eines Ribosoms verantwortlich sind.

Sekundärstruktur der 18S und 28S rRNA

7) Die kleine ribosomale Untereinheit (18S rRNA) wird im englischen Sprachgebrauch als SSU rRNA (= small subunit ribosomal RNA) bezeichnet (Abb. 11). Im Vergleich dazu wird die große ribosomale Untereinheit mit LSU rRNA (= large subunit ribosomal RNA) abgekürzt.
Abb. 11: Sekundärstruktur der 18S rRNA des Plattwurmes *Calicophoron calicophoron* (Plathelminthes).
I.4. Zielsetzung der vorliegenden Arbeit

Von der durchgeführten phylogenetischen Rekonstruktion mittels verschiedener baumrekonstruierender Algorithmen (Parsimony, Maximum-Likelihood) wird erhofft, neue Erkenntnisse bezüglich der Schwestergruppenverhältnisse innerhalb der Bivalvia (Mollusca) gewinnen zu können. Weiters sollen von den errechneten Stammbäumen Szenarien hinsichtlich des phylogenetischen Ursprungs der Pteriomorpha abgeleitet werden. Die Beziehungen zwischen und innerhalb der Großgruppen der Pteriomorpha stehen jedoch im Vordergrund der vorliegenden Arbeit. Folgende Fragestellungen sollen beantwortet werden:

♦ Haben die Pteriomorpha einen monophyletischen Ursprung?
♦ Welche Position nehmen die Heteroconchia ein?
♦ Wie sehen die phylogenetischen Beziehungen innerhalb und zwischen den Großgruppen der Pteriomorpha aus?
♦ Gibt es eine Kongruenz der molekularen Daten (18S und 28S rDNA)?

Ausgehend von den ermittelten Phylogenien und Gruppierungen innerhalb der Stammbäume sollen die verwendeten molekularen Markersysteme (18S und 28S rDNA) auf ihre Eignung für die Beantwortung von phylogenetischen Fragestellungen überprüft werden. Besonderes Augenmerk liegt hierbei auf der Frage, für welchen Zeitrahmen (erdgeschichtliche Periode) eine bestimmte Nukleotidsequenz ein verlässliches phylogenetisches Signal liefert. Es soll weiter das Verhältnis zwischen Signal und Rauschen im Hinblick auf das Auftreten von nicht aufgelösten Polytomien diskutiert werden sowie das Ausmaß und der Einfluß der Absättigung der Gene mit Mutationen (Saturierung). Folgende Fragestellungen sollen diskutiert werden:

♦ In welchem Ausmaß unterscheiden sich die Evolutionsraten zwischen den verwendeten molekularen Markern und zwischen den erhaltenen Gruppierungen?
♦ Ab welchem Zeitpunkt sind die verwendeten molekularen Marker saturiert?
♦ Innerhalb welcher Zeitspanne liefern die molekularen Marker verlässliche Phylogenien?
♦ Sind die nicht aufgelösten Bereiche der Stammbäume das Resultat von a) Saturierung, b) jungen oder c) raschen Radiationen?

II. MATERIAL UND METHODEN

II.1. Untersuchte Tiere .. 36

II.2. Sequenzierung der 18S rDNA .. 40
 II.2.1. DNA-Extraktion mittels Chelex® 100 Resin ... 40
 II.2.2. Amplifikation der 18S rDNA mittels PCR .. 41
 II.2.3. Sequenzierung .. 44

II.3. Sequenzierung der 28S rDNA .. 45
 II.3.1. DNA-Extraktion nach dem CTAB-Protokoll ... 45
 II.3.2. Amplifikation der 28S rDNA mittels PCR .. 46
 II.3.3. Klonierung der 28S rDNA .. 47

II.4. Phylogenetische Analyse ... 51
 II.4.1. Verwendete Programme und Parameter .. 51
 II.4.2. Verwendete Taxa in der phylogenetischen Analyse ... 53
 II.4.2.1. 18S rDNA-Datensatz ... 53
 II.4.2.2. 28S rDNA-Datensatz ... 56
 II.4.2.3. 18S+28S rDNA-Datensatz .. 57
II.1. Untersuchte Tiere

Insgesamt wurden 33 Vertreter der Ordnung Pteriomorpha, sowie 7 Vertreter aus weiteren Ordnungen der Bivalvia (Heterodonta, Protobranchia und Septibranchia) für diese Arbeit ausgewählt. Zusätzlich wurden 3 Scaphopoda (Mollusca) und ein Vertreter des Stammes Sipuncula (Sipunculida indet.) als weitere Außengruppen in die Untersuchungen einbezogen. Die untersuchten Bivalvia, Scaphopoda und Sipuncula stammten aus folgenden Gebieten (Abb. 14):

- Safaga Bay (Rotes Meer, Ägypten)
- Rovinj (Nördliche Adria, Kroatien)
- Trondheim Fjord (Atlantik, Norwegen)
- Ägäisches Meer, Griechenland
- Charleston (Atlantik, South Carolina, USA)
- National Museum von Neuseeland – NMNZ (Pazifik, Neuseeland)
- Taboga Island (Golf von Panama, Panama)

Die Tiere wurden bei Tauchgängen (SCUBA diving) oder durch Dredschen gewonnen, und anschließend entweder in flüssigem Stickstoff tiefgefroren oder in 96%igem Ethanol konserviert. Nachdem die Proben an das Institut für Zoologie (Universität Wien) gebracht wurden, erfolgte die Artbestimmung durch Dr. Gerhard Steiner. In weiterer Folge wurden die Proben bei –20°C oder in 96%igem Ethanol gelagert.

<table>
<thead>
<tr>
<th>Ordnung</th>
<th>Familiengruppe</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteriomorpha</td>
<td>Anomioidea</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Arcoidea</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Limoidea</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mytiloidea</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ostreioidea</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pectinoidea</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Pinnioidea</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Plicatuloidea</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pteroidea</td>
<td>7</td>
</tr>
<tr>
<td>Heterodonta</td>
<td>Lucinoidea</td>
<td>3</td>
</tr>
<tr>
<td>Protobranchia</td>
<td>Nuculanoidea</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Solemyoidea</td>
<td>1</td>
</tr>
<tr>
<td>Septibranchia</td>
<td>Cuspidarioidea</td>
<td>1</td>
</tr>
<tr>
<td>Klasse</td>
<td>Ordnung</td>
<td>N</td>
</tr>
<tr>
<td>Scaphopoda</td>
<td>Denaliida</td>
<td>3</td>
</tr>
<tr>
<td>Stamm</td>
<td>Art</td>
<td></td>
</tr>
<tr>
<td>Sipuncula</td>
<td>Sipunculida indet.</td>
<td>1</td>
</tr>
<tr>
<td>Insgesamt</td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

Tabelle 2: Untersuchte Innengruppen (Pteriomorpha, Bivalvia) und Außengruppen (Heterodonta, Protobranchia, Septibranchia, Scaphopoda, Sipuncula) im Überblick. N Anzahl der untersuchte Arten

Abbildung 15: Schalen von einigen untersuchten Pteriomorpha (Bivalvia). A *Modiolus auriculatus* (Mytiloidea); B *Pteria macroptera* (Pteroidea); C *Spondylus crassisquamatus* (Pectinoidea); D *Septifer bilocularis* (Mytiloidea)
<table>
<thead>
<tr>
<th>Gattung</th>
<th>Art</th>
<th>Familie</th>
<th>Familiengruppe</th>
<th>Erstbeschreibung</th>
<th>Sammelort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acar</td>
<td>plicata</td>
<td>Arcidae</td>
<td>Arcoidea</td>
<td>(Dillwyn, 1817)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Arca</td>
<td>noae</td>
<td>Arcidae</td>
<td>Arcoidea</td>
<td>Linné, 1758</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Glycymeris</td>
<td>pedunculus</td>
<td>Glycymeridae</td>
<td>Arcoidea</td>
<td>(Linné, 1758)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Modiolus</td>
<td>auriculatus</td>
<td>Modiolinae</td>
<td>Mytiloidea</td>
<td>Krauss, 1848</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Brachidontes</td>
<td>variabilis</td>
<td>Mytilinae</td>
<td>Mytiloidea</td>
<td>(Krauss, 1848)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Septifer</td>
<td>cf. bilocularis</td>
<td>Mytilinae</td>
<td>Mytiloidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Gregariella</td>
<td>coarctata</td>
<td>Mytilinae</td>
<td>Mytiloidea</td>
<td>(Carpenter, 1856)</td>
<td>Taboga Island, Golf von Panama (P)</td>
</tr>
<tr>
<td>Ctenoides</td>
<td>annulatus</td>
<td>Limidae</td>
<td>Limoidea</td>
<td>(Lamarck, 1819)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Lima</td>
<td>lima</td>
<td>Limidae</td>
<td>Limoidea</td>
<td>Linné, 1758</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Hyotissa</td>
<td>cf. hyotis</td>
<td>Gryphaeidae</td>
<td>Ostreoidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Hyotissa</td>
<td>cf. numisma</td>
<td>Gryphaeidae</td>
<td>Ostreoidea</td>
<td>(Lamarck, 1819)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Saccostrea</td>
<td>cucullata</td>
<td>Ostreidae</td>
<td>Ostreoidea</td>
<td>Born, 1778</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Lopha</td>
<td>cristagalli</td>
<td>Ostreidae</td>
<td>Ostreoidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Mimachlamys</td>
<td>varia</td>
<td>Pectinidae</td>
<td>Pectinoidea</td>
<td>Linné, 1758</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Aequipecten</td>
<td>opercularis</td>
<td>Pectinidae</td>
<td>Pectinoidea</td>
<td>Linné, 1758</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Pedum</td>
<td>spondyloideum</td>
<td>Pectinidae</td>
<td>Pectinoidea</td>
<td>Gmelin, 1791</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Exellchlamys</td>
<td>spectabilis</td>
<td>Pectinidae</td>
<td>Pectinoidea</td>
<td>Reeve, 1853</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Flexopecten</td>
<td>glaber</td>
<td>Pectinidae</td>
<td>Pectinoidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Spondylus</td>
<td>hystrix</td>
<td>Spondylidae</td>
<td>Pectinoidea</td>
<td>Röding, 1798</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Spondylus</td>
<td>crassisquamatus</td>
<td>Spondylidae</td>
<td>Pectinoidea</td>
<td>Lamarck, 1819</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Pinna</td>
<td>muricata</td>
<td>Pinidae</td>
<td>Pinnoidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Atrina</td>
<td>pectinata</td>
<td>Pinidae</td>
<td>Pinnoidea</td>
<td>(Linné, 1767)</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Isognomon</td>
<td>legumen</td>
<td>Isognomidae</td>
<td>Pteroidea</td>
<td>Gmelin, 1791</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Malvifundus</td>
<td>regulatus</td>
<td>Malleidae</td>
<td>Pteroidea</td>
<td>Forsskal, 1775</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Vulsella</td>
<td>sp.</td>
<td>Malleidae</td>
<td>Pteroidea</td>
<td>—</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Pteria</td>
<td>macroptera</td>
<td>Pteriidae</td>
<td>Pteroidea</td>
<td>(Lamarck, 1819)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Electroma</td>
<td>alacorvi</td>
<td>Pteriidae</td>
<td>Pteroidea</td>
<td>(Dillwyn, 1817)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Pinctada</td>
<td>margeritifera</td>
<td>Pteriidae</td>
<td>Pteroidea</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Pulvinites</td>
<td>exempla</td>
<td>Pteriidae</td>
<td>Pteroidea</td>
<td>(Hedley, 1914)</td>
<td>East Cape, Pazifik (NZ)</td>
</tr>
<tr>
<td>Plicatula</td>
<td>plicata</td>
<td>Plicatulidae</td>
<td>Plicatuloidea</td>
<td>(Linné, 1767)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Dimyaria</td>
<td>maoria</td>
<td>Dimyidae</td>
<td>Anomoioidae</td>
<td>(Powell, 1937)</td>
<td>Kawhia, Pazifik (NZ)</td>
</tr>
<tr>
<td>Pododesmus</td>
<td>caelata</td>
<td>Anomoiidae</td>
<td>Anomoioidae</td>
<td>(Reeve, 1859)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Anomia</td>
<td>ephippium</td>
<td>Anomoiidae</td>
<td>Anomoioidae</td>
<td>Linné, 1758</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
</tbody>
</table>

Tabelle 3: Untersuchte Pteriomorpha (Bivalvia, Mollusca) mit Erstbeschreibung und Sammelorten. ET Ägypten; HR Kroatien; NZ Neuseeland; P Panama
<table>
<thead>
<tr>
<th>Gattung</th>
<th>Art</th>
<th>Familie</th>
<th>Familiengruppe</th>
<th>Ordnung</th>
<th>Erstbeschreibung</th>
<th>Sammelort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiolucina</td>
<td>semperiana</td>
<td>Lucinidae</td>
<td>Lucinoidea</td>
<td>Heterodonta</td>
<td>(Issel, 1869)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Ctena</td>
<td>divergens</td>
<td>Lucinidae</td>
<td>Lucinoidea</td>
<td>Heterodonta</td>
<td>(Philippi, 1850)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Diplodonta</td>
<td>cf. subrotundata</td>
<td>Ungulinidae</td>
<td>Lucinoidea</td>
<td>Heterodonta</td>
<td>Issel, 1850</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Nuculana</td>
<td>pella</td>
<td>Nucoloidea</td>
<td>Nuculanoidea</td>
<td>Protobranchia</td>
<td>(Linné, 1767)</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Yoldiella</td>
<td>nana</td>
<td>Nucoloidea</td>
<td>Nuculanoidea</td>
<td>Protobranchia</td>
<td>(Sars M., 1865)</td>
<td>Trondheim Fjord, Atlantik (N)</td>
</tr>
<tr>
<td>Solemya</td>
<td>togata</td>
<td>Solemyoidae</td>
<td>Solemyoidea</td>
<td>Protobranchia</td>
<td>(Poli, 1795)</td>
<td>Ägäisches Meer (GR)</td>
</tr>
<tr>
<td>Tropidomya</td>
<td>abbreviata</td>
<td>Cuspidariida</td>
<td>Cuspidarioidea</td>
<td>Septibranchia</td>
<td>(Forbes, 1843)</td>
<td>Trondheim Fjord, Atlantik (N)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gattung</th>
<th>Art</th>
<th>Familie</th>
<th>Ordnung</th>
<th>Klasse</th>
<th>Erstbeschreibung</th>
<th>Sammelort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antalis</td>
<td>perinvoluta</td>
<td>Dentaliida</td>
<td>Dentalida</td>
<td>Scaphopoda</td>
<td>(Ludbrook, 1954)</td>
<td>Safaga Bay, Rotes Meer (ET)</td>
</tr>
<tr>
<td>Antalis</td>
<td>inaequicostata</td>
<td>Dentaliida</td>
<td>Dentalida</td>
<td>Scaphopoda</td>
<td>(Dautzenberg, 1891)</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
<tr>
<td>Antalis</td>
<td>dentalis</td>
<td>Dentaliida</td>
<td>Dentalida</td>
<td>Scaphopoda</td>
<td>(Linné, 1758)</td>
<td>Rovinj, Nördliche Adria (HR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gattung</th>
<th>Art</th>
<th>Stamm</th>
<th>Erstbeschreibung</th>
<th>Sammelort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sipunculida</td>
<td>indet.</td>
<td>Sipuncula</td>
<td>—</td>
<td>Charleston, Atlantik (USA)</td>
</tr>
</tbody>
</table>

Tabelle 4: Untersuchte Heterodonta, Protobranchia und Septibranchia (alle Bivalvia, Mollusca) sowie Scaphopoda (Mollusca) mit Erstbeschreibung und Sammelorten. N Norwegen; ET Ägypten; GR Griechenland; HR Kroatien; USA Vereinigte Staaten von Amerika
II.2. Sequenzierung der 18S rDNA

II.2.1. DNA-Extraktion mittels Chelex® 100 Resin

Für die Extraktion der genomischen DNA wurden entweder der Adduktormuskel, die Kiemen, oder, wie bei vielen verhältnismäßig kleinen Arten, der gesamte Weichkörper der Tiere herangezogen. Die Extraktion wurde nach dem Chelex-Protokoll (Walsh et al. 1991) durchgeführt, allerdings wurde es für die DNA Extraktion bei Bivalven ein wenig modifiziert.

1. Ein kleines Probenstück (ca. 500mg) in möglichst kleine Stückchen zerteilen und in ein soge-nanntes Eppendorf-Reaktionsgefäß geben. Anschließend 15mg Chelex® 100 Resin, 200µl steriles Aqua dest., 25µl Proteinase K (→ 2,5mg/ml), 10µl RNase A (→ 25µg/ml), und 10µl DTT (→ 50mM) zugeben.
2. Die Proben in einem Wasserbad bei 65°C unter horizontalem Schütteln (150rpm) solange inkubieren, bis das Gewebe vollständig aufgelöst (lysiert) ist.
3. Anschließend das Lysat 5 Sekunden auf höchster Stufe vortexen.
5. Anschließend das Lysat 5 Sekunden auf höchster Stufe vortexen (optional).
8. Je nach Qualität und Quantität der extrahierten genomischen DNA werden zwischen 1 und 5µl (≤1µg) in der PCR eingesetzt. Gegebenenfalls muß die DNA verdünnt werden.

[Image: Genomische DNA]

Abb. 16: (4.5.1999) Extrahierte genomische DNA (je 5µl aus 50µl nach DNA-Fällung mit Isopropanol); von links nach rechts: Anomia ephippium, Acar plicata, Arca noae, Pododesmus caelata, Septifer cf. bilocularis, Spondylus crassisquamatus, Spondylus hystrix, Vulsella sp.
II.2.2. Amplifikation der 18S rDNA mittels PCR

Schritt 1: Vervielfältigung (Amplifikation) der kompletten 18S rDNA

Die kleine ribosomale Untereinheit wird als 18S rDNA bezeichnet, und in der vorliegenden Arbeit wurde nahezu die gesamte 18S rDNA mit den Primern F und R in einer Polymerase-Ketten-Reaktion („Polymerase Chain Reaction“ – PCR)\(^8\) amplifiziert (Saiki et al. 1987). Die Primer\(^9\) haben folgende Zusammensetzung (Steiner & Müller 1996):

a) Verwendete Primer

\(F \)\(^{10}\) (30mer)

5' CCG AAT TCG TCG ACA ACC TGG TTG ATC CTG 3'

\(R \)\(^{11}\) (39mer)

5' CCC GGG ATC CAA GCT TGA TCC TTC TGC AGG TTC ACC TAC 3'

b) PCR-Raktionsansatz

\begin{tabular}{ll}
<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Menge</td>
<td>≤1µg</td>
</tr>
<tr>
<td>10x PCR-Puffer</td>
<td>2,5µl</td>
</tr>
<tr>
<td>10x dNTP Mix [2mM]</td>
<td>2,5µl</td>
</tr>
<tr>
<td>MgCl(_2) [25mM]</td>
<td>1µl</td>
</tr>
<tr>
<td>Primer F [100pM/µl]</td>
<td>0,25µl</td>
</tr>
<tr>
<td>Primer R [100pM/µl]</td>
<td>0,25µl</td>
</tr>
<tr>
<td>Taq DNA Polymerase [5U/µl]</td>
<td>0,25µl</td>
</tr>
<tr>
<td>Aqua dest. (steril)</td>
<td>Rest auf 25µl</td>
</tr>
<tr>
<td>mit 3-4 Tropfen Mineral Öl überschichten</td>
<td></td>
</tr>
</tbody>
</table>
\end{tabular}

mit 3-4 Tropfen Mineral Öl überschichten

c) Temperatur Profil auf dem RoboCycler 96 Gradient (Stratagene)

\begin{tabular}{ll}
<table>
<thead>
<tr>
<th>Schritt</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x [94°C(2')]</td>
<td>94°C(40") - 50°C(40") - 72°C(60")</td>
</tr>
<tr>
<td>35x [94°C(40") - 61°C(40") - 72°C(60")]</td>
<td>1x [72°C(10')] - 6°C (∞)</td>
</tr>
</tbody>
</table>
\end{tabular}

\(^8\) Die PCR ist patentrechtlich geschützt für Hoffmann-La Roche.

\(^9\) Primer sind synthetisch hergestellte kurze DNA-Stücke (10-40 Nukleotide), die als Ausgangspunkte für die Vervielfältigung der DNA mittels PCR dienen. Die Bezeichnung z.B. 34mer gibt die Anzahl der Nukleotide an.

\(^{10}\) F steht für „forward“, d.h. in Syntheserichtung der DNA-Polymerase (5'→3')

\(^{11}\) R steht für „reverse“, d.h. entgegen der Syntheserichtung der DNA-Polymerase (3'→5')
Schritt 2: 18S rDNA Nested PCR

Die eigentliche Sequenzierung der 18S rDNA erfolgte durch die direkte Sequenzierung von zwei überlappenden Fragmenten. In einer sogenannten „nested PCR“ wurden diese beiden Fragmente mit den Primernpaaren F*-T3/R2-STI2 und F2-STI2/R*-T3 reamplifiziert (Abb. 18 und 19). Die ursprünglichen Primer F und R wurden dahingehend modifiziert, daß sie einerseits verkürzt und andererseits ein paar Nukleotide nach innen versetzt wurden („nested primers“). Die für die Re-PCR verwendeten Primer wurden jeweils am 5'-Ende mit einer kurzen Nukleotidsequenz, sogenannten „Tags“ oder „Tails“ (T3 und STI2), versehen. An diesen Tags binden später die T3- und STI2-Sequenzierprimer, wodurch die beiden überlappenden Fragmente der 18S rDNA direkt sequenziert werden können, ohne den Umweg über einen Klonierungsschritt gehen zu müssen (siehe Kapitel II.3.).
a) Verwendete Primer¹²⁾

PCR-Produkt 1: ca. 1050bp
F*-T3 (34mer)
5' attaaccctcactaaagCAA CCT GGT TGA TCC TG 3'
R2-STI2 (34mer)
5' cgatgaagaacgcagcgAGA ACT RCG ACG GTA TC 3'

PCR-Produkt 2: ca. 900bp
F2-STI2 (34mer)
5' cgatgaagaacgcagcgTCA GAG GYT CGA AGA CG 3'
R*-T3 (37mer)
5' attaaccctcactaaagCCT TCT GCA GGT TCA CCT AC 3'

b) PCR-Reaktionsansatz

<table>
<thead>
<tr>
<th>DNA Menge</th>
<th>Produkt 1</th>
<th>Produkt 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR aus Schritt 1</td>
<td>1:250 verdünnen → 3µl einsetzen</td>
<td></td>
</tr>
<tr>
<td>10x PCR-Puffer</td>
<td>7,5µl</td>
<td>7,5µl</td>
</tr>
<tr>
<td>10x dNTP Mix [1,5 mM]</td>
<td>7,5µl</td>
<td>7,5µl</td>
</tr>
<tr>
<td>MgCl<sub>2</sub> [25mM]</td>
<td>3µl</td>
<td>3µl</td>
</tr>
<tr>
<td>Primer 1 [50pM/µl]</td>
<td>1,5µl [F2-STI2]</td>
<td>1,5µl [R2-STI2]</td>
</tr>
<tr>
<td>Primer 2 [50pM/µl]</td>
<td>0,75µl [R*-T3]</td>
<td>0,75µl [F*-T3]</td>
</tr>
<tr>
<td>Taq DNA Polymerase [5U/µl]</td>
<td>0,75µl</td>
<td>0,75µl</td>
</tr>
<tr>
<td>Aqua dest. (steril)</td>
<td>Rest auf 75µl</td>
<td>Rest auf 75µl</td>
</tr>
</tbody>
</table>

Mit 3-4 Tropfen Mineral Öl überschichten

c) Temperatur Profil auf dem RoboCycler 96 Gradient (Stratagene)

1x [94°C(2')]
35x [94°C(40°) - 52°C(40°) - 72°C(60°)]
1x [72°C(10')] - 6°C (~)

II.2.3. Sequenzierung

a) DNA-Fällung mit Polyethylenglykol

Um die PCR-Produkte von den nicht umgesetzten Bestandteilen des Reaktionsansatzes zu trennen und zu konzentrieren wurde eine DNA-Fällung mit Polyethylenglykol (PEG) durchgeführt.

1. Zu 75µl PCR-Reaktionsansatz 75µl PEG-Lösung zugeben, gut durchmischen und mindestens 10 Minuten bei 37°C inkubieren.
2. DNA-PEG-Lösungsgemisch bei 4°C und mindestens 15 000rpm 40 Minuten zentrifugieren, sodaß die DNA am Boden des Reaktionsgefässes einen Niederschlag bildet (=pelletiert).
3. Überstand abheben und das DNA-Pellet mit 500µl 80%igem eiskalten Ethanol waschen und trocknen.
4. DNA in 10µl Aqua dest. (steril) aufnehmen.

b) Aufreinigung der PCR-Produkte und Sequenzierung

Die PCR-Produkte wurden zusammen mit 3µl 1x Ladepuffer Typ III auf einem 1%igen Agarose-Gel, das mit Ethidiumbromid gefärbt wurde, unter Verwendung eines 0,5x Tris-Acetat-EDTA (TAE) Puffers aufgetrennt. Als Längenmarker diente eine 1kb-DNA-Leiter oder der Low-Range I DNA Molecular Marker. Anschließend wurden die gewünschten Fragmente (PCR-Produkt 1 und 2) mit einem sterilen Skalpell aus dem Gel ausgeschnitten und in ein steriles Eppendorf-Reaktionsgefäß übergeführt. Für die Aufreinigung der DNA-Fragmente werden folgende Reinigungssysteme empfohlen: Cleanmix, GenElute™, QIAquick. Die direkte Sequenzierung der 18S rDNA mittels T3- und STI2-Sequenzierprimer wurde von der Firma VBC GENOMICS Bioscience Research GmbH auf einem automatischen Sequenzierer (LI-COR 4000 IR2 System) durchgeführt.
II.3. Sequenzierung der 28S rDNA

II.3.1. DNA-Extraktion nach dem CTAB-Protokoll

Für die Extraktion der genomischen DNA wurden entweder der Adduktormuskel, die Kiemen, oder, wie bei vielen verhältnismäßig kleinen Arten, der gesamte Weichkörper der Tiere herangezogen. Es wurde das sogenannte „CTAB-Protokoll“ (Navajas et al. 1998) angewendet, wobei einige Adaptationen durchgeführt wurden, um eine bessere Qualität der genomischen DNA zu erhalten.

1. Ein kleines Probenstück (ca. 500mg) in möglichst kleine Stückchen zerteilen. 380µl Extraktionspuffer (CTAB-Lösung), 20µl Proteinase K und 10µl DTT zugeben.
2. Die Proben in einem Wasserbad bei 65°C unter horizontalem Schütteln (150rpm) solange inkubieren, bis sich das Gewebe vollständig aufgelöst hat (5-30 Minuten, oder länger).
3. Anschließend 30 Sekunden bei 12 000rpm zentrifugieren, um die Zelldebris zu pelletieren.
5. 4 Minuten bei 12 000rpm zentrifugieren.
6. Die obere, wässrige Phase (enthält die DNA) vorsichtig abheben (die Interphase soll nicht zerstört werden) und in ein frisches Eppendorf-Reaktionsgefäß überführen; 1 Volumen Chloroform:Isoamylalkohol (24:1) zugeben und vortexen.
7. 4 Minuten bei 12 000rpm zentrifugieren.
8. Die obere, wässrige Phase (enthält die DNA) vorsichtig abheben (die Interphase soll nicht zerstört werden) und in ein frisches Eppendorf-Reaktionsgefäß überführen; 1 Volumen Chloroform: Isoamylalkohol (24:1) zugeben und vortexen.
9. 4 Minuten bei 12 000rpm zentrifugieren, die obere, wässrige Phase (enthält die DNA) vorsichtig abheben und in ein frisches Eppendorf-Reaktionsgefäß überführen.
10. 0.1 Volumen (ca. 40µl) 3 M Na-Acetat und 2 Volumen (ca. 800µl) eiskalten 96% Ethanol (oder 100% Ethanol) zugeben → DNA-Fällung.
11. DNA-Fällung bei -80°C für 20 Minuten (oder 2 Stunden bis über Nacht bei -20°C) durchführen.
12. Anschließend die Proben 20 Minuten bei 12 000rpm zentrifugieren, um die DNA zu pelletieren.
13. Ethanol abnehmen und DNA-Pellet mit 1ml 80%igem eiskalten Ethanol waschen und trocknen.
14. DNA in 50-100µl Tris-HCl (pH 8.0) oder Aqua dest. (steril) resuspendieren.
15. Je nach Qualität und Quantität der extrahierten genomischen DNA, werden 1-2µl (≤1µg) in der PCR eingesetzt. Gegebenenfalls muß die DNA verdünnt werden.
II.3.2. Amplifikation der 28S rDNA mittels PCR

Die große ribosomale Untereinheit wird als 28S rDNA bezeichnet, und ein ca. 1300bp großer Bereich, der die Domänen D1-D3 umfaßt, wurde in einer PCR amplifiziert. Die verwendeten Primer haben folgenden Zusammensetzung (Littlewood 1994):

a) Verwendete Primer

LSU5 – forward (18mer)

5' ACC CGC TGA AYT TAA GCA 3'

LSU3 – reverse (18mer)

5' TCC TGA GGG AAA CTT CGG 3'

b) PCR-Raktionsansatz

<table>
<thead>
<tr>
<th>28S rDNA vollständig</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Menge</td>
</tr>
<tr>
<td>10x PCR-Puffer</td>
</tr>
<tr>
<td>10x dNTP Mix [2mM]</td>
</tr>
<tr>
<td>MgCl₂ [25mM]</td>
</tr>
<tr>
<td>Primer LSU5 [100pM/µl]</td>
</tr>
<tr>
<td>Primer LSU3 [100pM/µl]</td>
</tr>
<tr>
<td>Taq DNA Polymerase [5U/µl]</td>
</tr>
<tr>
<td>Aqua dest. (steril)</td>
</tr>
<tr>
<td>mit 3-4 Tropfen Mineral Öl überschichten</td>
</tr>
</tbody>
</table>

c) Temperatur Profil auf dem RoboCycler 96 Gradient (Stratagene)

1x [94°C(2′)]

35x [94°C(40") - 55°C(40") - 72°C(75")]

1x [72°C(10′)] - 6°C (∞)

Abb. 20: (24.1.00) Coamplifikate bei der 28S rDNA PCR (je 5µl); von links nach rechts: Parilimya maoria, Pulvinites exempla, Hyotissa hyotis, Hyotissa numisma, Ctenoides annulatus, Low-Range I DNA Molecular Marker, Diplodonta cf. subrotundata, Plicatula plicata, Vulsella sp., Dimyaria maoria. Nur Ctenoides annulatus, Plicatula plicata sowie Vulsella sp. zeigen eine diskrete singuläre Bande.
II.3.3. Klonierung13 der 28S rDNA

Da bei zahlreichen Proben in der PCR-Reaktion Coamplifikate auftraten (Abb. 20), wurde bei allen Proben auf die direkte Sequenzierung verzichtet und das gewünschte 28S rDNA-Fragment subkloniert. Für die Klonierung wurde das TOPO TA Cloning\textregistered System (Invitrogen) herangezogen, welches sich vor allem durch ein einfaches Protokoll und eine sehr hohe Transformationseffizienz auszeichnet. In diesem System wird als Vektor das Plasmid pCR\textregistered2.1-TOPO (Abb. 21) verwendet und damit die kompetenten Zellen, Escherichia coli (E. coli) TOP10, transformiert.

13 Unter Klonierung versteht man die gezielte Vermehrung von spezifischen DNA-Abschnitten (meistens handelt es sich um Gene) mittels eines Wirts-Vektorsystems. In der vorliegenden Arbeit werden Escherichia coli-Bakterien als Wirte und das pCR\textregistered 2.1. TOPO Plasmid als Vektorsystem verwendet.
a) Vorbereitung der PCR-Produkte für die Klonierung

Von den PCR-Reaktionen wurden jeweils ein 5µl Aliquot zusammen mit 3µl 1x Ladepuffer Typ III auf einem 1%igen Agarose-Gel, das mit Ethidiumbromid eingefärbt wurde, unter Verwendung eines 0,5x Tris-Acetat-EDTA (TAE) Puffers aufgetrennt. Als Längenmarker diente eine 1kb-DNA-Leiter oder der Low-Range I DNA Molecular Marker. Bei manchen Proben traten in der PCR-Reaktion Coamplifikate auf (Abb. 20), sodaß das gewünschte 28S rDNA-Fragment aus dem Agarose-Gel aufgereinigt (eluiert) werden mußte (siehe II.2.3.b.). Da bei der Elution des DNA-Fragments aus dem Agarose-Gel meist die für eine erfolgreiche Klonierung in den pCR®-2.1-TOPO Vektor notwendigen überhängenden Adeninnukleotide (dATPs) verloren gehen, mußten für die Transformationsreaktion wieder Adeninnukleotide an das 5' und 3'-Ende des DNA-Fragment ligiert werden.

Ligation der Adeninnukleotide („A-Tailing“)

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x PCR Puffer</td>
<td>1µl</td>
</tr>
<tr>
<td>MgCl₂ [25mM]</td>
<td>1µl</td>
</tr>
<tr>
<td>10x dATP [2mM]</td>
<td>1µl</td>
</tr>
<tr>
<td>Taq DNA Polymerase [5U/µl]</td>
<td>1µl</td>
</tr>
<tr>
<td>PCR Produkt</td>
<td>≤6µl</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>Rest auf 10µl</td>
</tr>
</tbody>
</table>

→ Proben bei 70-72°C für 15-30 Minuten inkubieren und danach auf ~20°C geben.

b) Transformation

1. Die kompetenten *E. coli* Zellen langsam auf Eis auftauen lassen. Aus dem Ligationsansatz 2µl zu den Zellen dazupipettieren und vorsichtig mischen - nicht auf- und abpipettieren!
2. Transformationsansatz 20 Minuten auf Eis inkubieren.
3. Anschließend Transformationsansatz 40 Sekunden auf 42°C inkubieren → Hitze-Schock der *E. coli* Zellen
4. Transformationsansatz auf Eis zurückstellen, 250µl SOC-Medium zugeben und 1 Stunde bei 37°C in einem Wasserbad unter horizontalem Schütteln (120rpm) inkubieren.
5. 50-100µl des Transformationsansatzes auf eine LB/Amp-Platte ausplattieren, die Platten umdrehen und mindestens 24 Stunden bei 37°C in einem Brutschrank inkubieren.

Ligationsansatz

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR Produkt oder aus „A-Tailing“</td>
<td>≤4µl</td>
</tr>
<tr>
<td>Salz Lösung</td>
<td>1µl</td>
</tr>
<tr>
<td>pCR® 2.1 TOPO [10ng/µl]</td>
<td>1µl</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>Rest auf 6µl</td>
</tr>
</tbody>
</table>

→ Ligationsansatz maximal 5 Minuten bei Raumtemperatur inkubieren und danach auf Eis stellen.
Kompetente Zellen

Escherichia coli TOP10
Genotyp: F *mcr*A Δ(mrr-hsdRMS-mrcBC), *Φ*80lacZΔM15, ΔlacX74, *deoR*, *recA1*, *araD139*, Δ(ara-leu)7697, *galU*, *gak*, *rpsL* (Str²), *endA1*, *nupG*

LB/Amp-Platten (Komponenten siehe Kapitel V.2.1.)
1. Zu 100ml LB-Medium 1,5g Agar-Agar zugeben und aufkochen (Lösung sollte klar sein).
2. LB-Agar-Agar Lösung auf Handwärme abkühlen lassen und 100µl Ampicillin (Amp) oder Kanamycin (Kan) zugeben. Achtung: Ist die Lösung zu heiß, wird das Antibiotikum inaktiviert!

c) Übernacht-Kulturen und Plasmidisolation

1. 2ml der Übernacht-Kultur werden unter semi-sterilen Bedingungen in ein Eppendorf-Reaktionsgefäß übergeführt und bei 12 000rpm für 2 Minuten zentrifugiert, um die *E. coli* Zellen zu pelletieren.
2. Der Überstand wird verworfen und die *E. coli* Zellen werden in 100µl gekühlter Lösung I resuspendiert.
3. Zu den resuspendierten *E. coli* Zellen werden 200µl frisch (!) bereitete Lösung II zugegeben und vorsichtig gemischt – nicht auf- und abpipettieren → Lyse der *E. coli* Zellen
4. Es werden 5µl RNase A-Lösung zugegeben, um die RNA der *E. coli* abzubauen. Der RNase-Verdau wird bei 37°C 15 Minuten inkubiert.
5. Anschließend werden 150µl gekühlte Lösung III zugegeben, um eine Deproteinierung durchzuführen. Die Proben wieder vorsichtig mischen und 2 Minuten auf Eis inkubieren.
6. Danach die Proben bei 4°C und 12 000rpm 5 Minuten zentrifugieren und den Überstand in ein steriles Eppendorf-Reaktionsgefäß überführen.
7. 500µl PEG-Lösung zugeben, gut mischen und mindestens 10 Minuten bei 37°C inkubieren.
8. Plasmid-PEG-Lösungsgemisch bei 4°C und mindestens 15 000rpm 40 Minuten zentrifugieren.
9. Überstand abheben und das DNA-Pellet mit 500µl 80%igem eiskalten Ethanol waschen und trocknen.
d) Restriktionsanalyse zur Excision des Inserts

Die isolierten Plasmide werden vor der Sequenzierung darauf überprüft, ob sie auch tatsächlich die Domänen D1-D3 der 28S rDNA als Insert beinhalten. Da die „Multiple Cloning Site“ des Vektors die Erkennungssequenz\(^{14}\) für das Restriktionsenzym EcoRI enthält, wird dieses Enzym für die Kontrollrestriktionsanalyse (Restriktionsverdau) verwendet.

Restriktionsansatz

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasmid-DNA</td>
<td>1 µl</td>
</tr>
<tr>
<td>10x Reaktionspuffer</td>
<td>2 µl</td>
</tr>
<tr>
<td>EcoRI [10 units/µl]</td>
<td>2 µl</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>15 µl</td>
</tr>
</tbody>
</table>

→ Restriktionssansatz über Nacht bei 37°C inkubieren.

Anschließend wird der Reaktionsansatz zusammen mit 3 µl 1x Ladepuffer Typ III auf einem 1%igen Agarose-Gel, das mit Ethidiumbromid gefärbt wurde, unter Verwendung eines 0,5x Tris-Acetat-EDTA (TAE) Puffers aufgetrennt. Als Längenmarker diente eine 1kb-DNA-Leiter oder der Low-Range I DNA Molecular Marker (Abb. 22).

*Abb. 22: (18.11.99) Restriktionsanalyse der Plasmide mit EcoRI; von links nach rechts: je 2 Klone von *Arca noae*, *Pteria macroptera*, *Malvifundus regulatus*, Low-Range I DNA Molecular Marker*

\(^{14}\) Die Erkennungssequenz für das Restriktionsenzym EcoRI ist \(G \downarrow AATTC\).
II.4. Phylogenetische Analyse

II.4.1. Verwendete Programme und Parameter

SEQUENZ-ALIGNMENT
- Manuell (DCSE) De Rijk & De Wachter 1993
- Computer-unterstützt (Clustal W) Thompson et al. 1994

PARSIMONIE (UNGEWICHET)
Algorithmus
- PAUP* 4.0b2 für Microsoft Windows Swofford 1998
- PAUP* 4.d65 für UNIX Swofford 1998

Parameter
- Lücken („Gaps“) treated as missing
- Search = heuristic
- addseq = random
- Nrep = 50
- Keep = all
- Swap = TBR (tree-bisection-reconnection)
- Multrees = yes (= Mulpars)
- nchuck = 100 (Schritt I) nchuck = 0 (Schritt II)
- chuckscore = 1 (Schritt I)
- start = current (Schritt II)

Robustheit
- Bootstrap
 - 1000 Wiederholungen
 - Nrep = 5
 - Swap = TBR
 - Keep = 50
- Bremer Decay index Bremer 1988, 1994
 - TreeRot Sorenson 1996
 - Nrep = 10
 - Swap = TBR
 - Keep = 100

MAXIMUM-LIKELIHOOD (ML) (ITERATIV)
Algorithmus
- PAUP* 4.0b2 für Microsoft Windows Swofford 1998
- PAUP* 4.d65 für UNIX Swofford 1998

Parameter
- start = current („strict consensus“-Baum der Parsimonie-Analyse)
- Hasegawa-Kishino-Yano (HKY85)-Modell Hasegawa et al. (1985)
- gamma distribution
ncat = 4
• gamma shape parameter (berechnet vom jeweiligen Datensatz)
• transition/transversion ratio (berechnet vom jeweiligen Datensatz)
• pinvar = estimate
• swap = NNI (nearest-neighbour-interchange)

Algorithmus
• fastDNAml 1.0.6 Olsen et al. 1994

Parameter
• ncat = 4
• Substitutionsparameter von PAUP*
• 5 branch rearrangements

NEIGHBOUR-JOINING

Algorithmus
• PAUP* 4.0b2 für Microsoft Windows Swofford 1998
• PAUP* 4.d65 für UNIX Swofford 1998

Parameter
• Hasegawa-Kishino-Yano (HKY85)-Modell Hasegawa et al. (1985)
• gamma distributed rate heterogeneity

RELATIVE RATE TEST
• LINTREE Takezaki et al. 1995

BAUMDARSTELLUNG
• TREEVIEW Page 1996

INFILE-KONVERTIERUNG
• FORCON Raes & Van de Peer 1999

HOMOPLASIE-INDIZES

Consistency-Index (CI)
• CI = m/s (m = minimale Schritte, s = beobachtete Schritte)
 - m = s ⇒ CI = 1 ⇒ keine Homoplasie vorhanden
 - s > m ⇒ CI < 1 ⇒ Homoplasie vorhanden

15) Homoplasie kann ein einerseits für die Analyse von jungen Radiationen ein Problem darstellen, andererseits aber auch den Vergleich von weit entfernten Taxa erschweren.
-II.4.2. Verwendete Taxa in der phylogenetischen Analyse

In den nachstehenden Kapiteln II.4.2.1.-II.4.2.3. sind jene Datensätze angeführt, die in den jeweiligen phylogenetischen Analysen verwendet wurden.

II.4.2.1. 18S rDNA-Datensatz

<table>
<thead>
<tr>
<th>Systematische Position</th>
<th>Art, Erstbeschreibung</th>
<th>Sammelort</th>
<th>DDBJ/EMBL/GENBANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteriomorpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcoidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcidae</td>
<td>Arca noae Linné, 1758</td>
<td></td>
<td>X90960</td>
</tr>
<tr>
<td></td>
<td>Acar plicata (Dillwyn, 1817) $</td>
<td></td>
<td>AJ389630</td>
</tr>
<tr>
<td></td>
<td>Barbatia virescens (Reeve, 1844)</td>
<td></td>
<td>X91974</td>
</tr>
<tr>
<td>Noetiidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Striarca lactea (Linné, 1758)</td>
<td></td>
<td>AF120531</td>
</tr>
<tr>
<td>Glycymerididae</td>
<td>Glycymeris pedunculus (Linné, 1758) $</td>
<td></td>
<td>AJ389631</td>
</tr>
<tr>
<td></td>
<td>Glycymeris glycymeris (Linné, 1758) ['sp.']</td>
<td></td>
<td>X91978</td>
</tr>
<tr>
<td>Mytiloidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modiolinae</td>
<td>Modiolus auriculatus Krauss, 1848 $</td>
<td></td>
<td>AJ389644</td>
</tr>
<tr>
<td></td>
<td>Modiolus americanus (Leach, 1815)</td>
<td></td>
<td>AF117735</td>
</tr>
<tr>
<td></td>
<td>Modiolus modiolus (Linné, 1758)</td>
<td></td>
<td>AF124210</td>
</tr>
<tr>
<td>Mytilinae</td>
<td>Brachidontes variabilis (Krauss, 1848) $</td>
<td></td>
<td>AJ389643</td>
</tr>
<tr>
<td></td>
<td>Brachidontes exustus (Linné, 1758)</td>
<td></td>
<td>AF229623</td>
</tr>
<tr>
<td></td>
<td>Septifer cf. bilocularis (Linné, 1758) $</td>
<td></td>
<td>AJ389645, AF229622</td>
</tr>
<tr>
<td></td>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td></td>
<td>L33451, L33452</td>
</tr>
<tr>
<td></td>
<td>Mytilus californianus Conrad, 1837</td>
<td></td>
<td>L33449</td>
</tr>
<tr>
<td></td>
<td>Mytilus edulis (Linné, 1758)</td>
<td></td>
<td>L24489</td>
</tr>
<tr>
<td></td>
<td>Mytilus trossulus Gould, 1850</td>
<td></td>
<td>L33453-55</td>
</tr>
<tr>
<td></td>
<td>Geukensia demissa (Dillwyn, 1817)</td>
<td></td>
<td>L33450</td>
</tr>
<tr>
<td></td>
<td>Hormomya domingensis (Keen, 1971 = Brachidontes domingensis Lamarck, 1819)</td>
<td></td>
<td>AF117736</td>
</tr>
<tr>
<td>Crenellinae</td>
<td>Musculus discors (Linné, 1767)</td>
<td></td>
<td>AF124206</td>
</tr>
<tr>
<td></td>
<td>Musculus senhousei (Benson, 1842)</td>
<td></td>
<td>AF124207</td>
</tr>
<tr>
<td>Lithophaginae</td>
<td>Lithophaga lithophaga (Linné, 1758)</td>
<td></td>
<td>AF120530, AF124208</td>
</tr>
</tbody>
</table>

$ National Institute of Genetics - DDBJ DNA Data Bank (http://www.nig.ac.jp/home.html)
17) European Bioinformatics Institute - EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk)
Bathymodiolinea

Lithophaga nigra (d’Orbigny, 1842) AF124209

Bathymodiolus thermophilus Kenk & Wilson, 1985 AF221638

Bathymodiolus heckerae Turner, Gustafson, Lutz & Vrijenhoek, 1998 AF221639

Bathymodiolus puteoserpentis von Cosel, Metiviere & Hashimoto, 1994 AF221640

Bathymodiolus childressi Gustafson, Turner, Lutz & Vrijenhoek, 1998 AF221641

Tamu fisheri Gustafson, Turner, Lutz & Vrijenhoek, 1998 AF221642

Idas macdonaldi Gustafson, Turner, Lutz & Vrijenhoek, 1998 AF221647

Idas washingtonia (Bernard, 1978) AF221645

Idas arcuatilis AF221643

Adipicola arcuatilis Dell, 1995 AF221644

Bathymodiolus putoserpentis von Cosel, Metiviere & Hashimoto, 1994 AF221640

Myrina pacifica AF221646

Pinnidae

Pinna muricata Linné, 1758 § AJ389636

Atrina pectinata (Linné, 1767) X90961

Pteriidae

Pteria macroptera (Lamarck, 1819) § AJ389637

Pteria hirundo (Linné, 1758) AF120532

Pinctada margaritifera (Linné, 1758) § AJ389638

Electromma alacorvi (Dillwyn, 1817) § AJ389641

Isognomonidae

Isognomon legumen (Gmelin, 1791) § AJ389639

Malleidae

Malvifundus regulatus (Forsskal, 1775) § AJ389640

Vulsella sp. § AJ389642

Ostreidae

Gryphaeidae

Hyotissa cf. hyotis (Linné, 1758) § AJ389632

Hyotissa cf. numisma (Lamarck, 1819) § AJ389633

Ostreinae

Ostrea edulis Linné, 1758 L49053, U88709

Lophinae

Lopha cristagalli (Linné, 1758) § AJ389635

Crassostreinae

Crassostrea virginica (Gmelin, 1791) Z29549

Saccostrea cucullata (Born, 1778) § AJ389634

Anomioidea

Anomiidae

Anomia ephippium Linné, 1758 ‡ AJ389661

Pododesmus caelata (Reeve, 1859) § AJ389650

Plicatuloidea

Plicatulidae

Plicatula plicata (Linné 1767) § AJ389651

Limoidea

Limidae

Lima lima (Linné, 1758) § AJ389652

Limaria hians (Gmelin, 1791) AF120534

Ctenoides annulatus (Lamarck, 1819) § AJ389653

Pectinoidea

Spondylidae

Spondylus crassisquamatus Lamarck, 1819 § AJ389646

Spondylus hystrix Röding, 1798 § AJ389647

Pectinidae

Pecten maximus (Linné, 1758) L49053

Placopecten magellanicus (Gmelin, 1791) X53899

Leider keinen Eintrag gefunden.

Genus-Status in Revision.
Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 55

Flexopecten glaber (Linné, 1758) AJ389662
Argopecten irradians (Lamarck, 1819) L11265
Argopecten gibbus (Linné, 1758) AF074389
Adamussium colbecki (Smith, 1902) AJ242534
Aequipecten opercularis (Linné, 1758) AJ310482
Chlamys islandica (Müller O.F., 1776) L11232
Chlamys hastata (Sowerby, 1843) L49049
Mimachlamys varia (Linné, 1758) L49051
Crasadoma gigantea (Gray, 1825) L49050
Excillichlamys spectabilis (Reeve, 1853) AJ389648
Pedum spondyloideum (Gmelin, 1791) AJ389649

Protobranchia
Solemyida
Solemyidae
Solemya togata (Poli, 1795) AJ389658
Solemya reidi Bernard, 1980 AF117737

Nuculida
Nuculanidae
Yoldiella nana (Sars M., 1865) AJ389659
Nuculana pella (Linné, 1767) AJ389665

Heteroconchia
Unionoidea
Unionidae
Elliptio complanata (Lightfoot, 1786) AF117738

Lucinoidea
Lucinidae
Cardiolucina semperiana (Issel, 1869) AJ389655
Ctena divergens (Philippi, 1850) AJ389656

Ungulinaidae
Diplodonta cf. subrotundata Issel, 1869 AJ389654

Veneroidea
Veneridae
Venus verrucosa Linné, 1758 AJ007614
Callista chione (Linné, 1758) AJ007613

Arcticidae
Arctica islandica (Linné, 1767) U93555

Galeommatidae
Galeomma takii Kuroda, 1945 X91969

Mactridae
Mactromeris polynyma (Stimpson, 1860) L11230
Mulinia lateralis (Say, 1822) L11268

Myoidea
Myidae
Mya arenaria Linné, 1758 AF117739

Anomalodesmata
Cuspidariidae

CAUDOFOVEATA
Limillosoridae

POLYPLACOPHORA
ischnochitonina
Chitonidae

GASTROPODA
Neritopsina
Neritidae
Nerita albicilla Linné, 1758 X91971

Vetigastropoda
Trochidae
Monodonta labio (Linné, 1758) X94271

Caenogastropoda
Muricidae
Thais clavigera (Kuster, 1860) X91979
Nassariidae
Nassarius siquinjorensis (A. Adams) = **crematus** (Hinds, 1844) X94273
Tonnidae
Bursa rana (Linné, 1758) X94269

SCAPHOPODA
Dentaliida
Dentaliidae
Antalis vulgaris (Da Costa, 1778)
Antalis inaequicostrata (Dautzenberg, 1891)
Antalis perinvoluta (Ludbrook, 1954)
Antalis dentalis (Linné, 1758)

SIPUNCULA
Sipunculida indet.

Tabelle 5: Taxa, die in der phylogenetischen Analyse der 18S rDNA verwendet wurden, mit Erstbeschreibung, Sammelort und jener Zugriffsnummer (Accession Number), mit der sie in den DDBJ-, Embl- und GenBank-Datenbanken hinterlegt sind. Taxa, die im Zuge dieser Arbeit sequenziert wurden, sind fettgedruckt. Fußnoten korrespondieren mit folgenden Sammelorten:
* Ägäisches Meer (Griechenland);
† Trondheim Fjord (Atlantik Norwegen);
‡ Rovinj (Nördliche Adria, Kroatien);
§ Safaga Bay (Rotes Meer, Ägypten);
** Charleston (Atlantik, USA).

II.4.2.2. 28S rDNA-Datensatz

<table>
<thead>
<tr>
<th>Systematische Art, Erstbeschreibung</th>
<th>Sammelort</th>
<th>DDBJ/EMBL/GENBANK Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteriomorpha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcoidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arca noae Linné, 1758</td>
<td></td>
<td>AJ307563</td>
</tr>
<tr>
<td>Acar plicata (Dillwyn, 1817)</td>
<td></td>
<td>AJ307533</td>
</tr>
<tr>
<td>Glycymerididae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycymeris pedunculus (Linné, 1758)</td>
<td></td>
<td>AJ307534</td>
</tr>
<tr>
<td>Mytiloidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modiolinaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modiolus auriculatus Krauss, 1848</td>
<td></td>
<td>AJ307537</td>
</tr>
<tr>
<td>Mytilinaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus edulis (Linné, 1758)</td>
<td></td>
<td>Z29550</td>
</tr>
<tr>
<td>Brachidontes variabilis (Krauss, 1848)</td>
<td></td>
<td>AJ307536</td>
</tr>
<tr>
<td>Gregariella coarctata (Carpenter, 1856)</td>
<td></td>
<td>AJ307538</td>
</tr>
<tr>
<td>Lithophaginaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnidiae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrina pectinata (Linné, 1767)</td>
<td></td>
<td>AJ307557</td>
</tr>
<tr>
<td>Pterioidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteridae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteria macroptera (Lamarck, 1819)</td>
<td></td>
<td>AJ307548</td>
</tr>
<tr>
<td>Pinctada radiata (Leach, 1814)</td>
<td></td>
<td>AF137032</td>
</tr>
<tr>
<td>Electroma alacorvi (Dillwyn, 1817)</td>
<td></td>
<td>AJ307549</td>
</tr>
<tr>
<td>Pulvinites exempla (Hadley, 1914)</td>
<td></td>
<td>AJ307540</td>
</tr>
<tr>
<td>Isognomonidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isognomon legumen (Gmelin, 1791)</td>
<td></td>
<td>AJ307551</td>
</tr>
<tr>
<td>Isognomon alata (Gmelin, 1791)</td>
<td></td>
<td>AF137033</td>
</tr>
<tr>
<td>Malleidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malvifundus regulatus (Forsskal, 1775)</td>
<td></td>
<td>AJ307547</td>
</tr>
<tr>
<td>Ostreoidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryphaeidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyotissa cf. hyotis (Linné, 1758)</td>
<td></td>
<td>AF137036</td>
</tr>
<tr>
<td>Hyotissa cf. numisma (Lamarck, 1819)</td>
<td></td>
<td>AF137035</td>
</tr>
<tr>
<td>Neopycnodonte cochlear (Poli, 1795)</td>
<td></td>
<td>AF137034</td>
</tr>
<tr>
<td>Ostreidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostreinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ostrea edulis Linné, 1758</td>
<td></td>
<td>AF137047, Z29551</td>
</tr>
<tr>
<td>Lophinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lopha cristagalli (Linné, 1758)</td>
<td></td>
<td>AF137038</td>
</tr>
<tr>
<td>Crassostreinae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crassostrea virginica (Gmelin, 1791)</td>
<td></td>
<td>AF137050, Z29549</td>
</tr>
<tr>
<td>Ostreaeidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccostrea cucullata* (Born, 1778)</td>
<td></td>
<td>AJ344329, Z29553</td>
</tr>
<tr>
<td>Anomioidea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomia ephippium Linné, 1758</td>
<td></td>
<td>AJ307556</td>
</tr>
<tr>
<td>Pododesmus caeruleus (Reeve, 1859)</td>
<td></td>
<td>AJ307555</td>
</tr>
<tr>
<td>Dimyidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimyaria maoria (Powell, 1937)</td>
<td></td>
<td>AJ307541</td>
</tr>
</tbody>
</table>
Plicatuloidea

Plicatula plicata (Linné, 1767) § AJ307539

Limoidea

Limidae

Lima lima (Linné, 1758) § AJ307558

Ctenoides annulatus (Lamarck, 1819) § AJ307550

Pectinoidea

Spondylidae

Spondylus crassisquama (Lamarck, 1819) § AJ307542

Pectinidae

Flexopecten glaber (Linné, 1758) § AJ307545

Aequipecten opercularis (Linné, 1758) § AJ307543

Mimachlamys varia (Linné, 1758) § AJ307546

Excelliclamys spectabilis (Reeve, 1853) § AJ307544

Protothecozoa

Solemyidae

Solemya togata (Poli, 1795) # AJ307552

Nuculanidae

Nuculana pella (Linné, 1767) ‡ AJ307553

Tabelle 6: Taxa, die in der phylogenetischen Analyse der 28S rDNA verwendet wurden, mit Erstbeschreibung, Sammelort und jener Zugriffsnummer (Accession Number), mit der sie in den DDBJ-, Embl- und GenBank-Datenbanken hinterlegt sind. Taxa, die im Zuge dieser Arbeit sequenziert wurden, sind fettgedruckt. Fußnoten korrespondieren mit folgenden Sammelorten: # Ägäisches Meer (Griechenland); ‡ Rovinj (Nördliche Adria, Kroatien); § Safaga Bay (Rotes Meer, Ägypten); * National Museum von Neuseeland – NMNZ (Pazifik, Neuseeland); & Taboga Island (Golf von Panama, Panama)

II.4.2.3. 18S+28S rDNA-Datensatz

<table>
<thead>
<tr>
<th>Systematische Position</th>
<th>Art, Erstbeschreibung</th>
<th>DDBJ/EMBL/GENBANK Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>18S rDNA</td>
<td>28S rDNA</td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td>Pteriomorpha</td>
<td>Arcoidea</td>
</tr>
<tr>
<td>Arcoidea</td>
<td>Arcidae</td>
<td>Arca noae Linné, 1758 ‡</td>
</tr>
<tr>
<td>Glycymerididae</td>
<td>Acar plicata (Dillwyn, 1817) §</td>
<td>AJ389630 AJ307533</td>
</tr>
<tr>
<td>Mytiloidea</td>
<td>Glycymeris pedunculus (Linné, 1758) §</td>
<td>AJ389631 AJ307534</td>
</tr>
<tr>
<td>Modiolinae</td>
<td>Modiolus auriculatus Krauss, 1848 §</td>
<td>AJ389644 AJ307537</td>
</tr>
<tr>
<td>Mytilinae</td>
<td>Mytilus edulis (Linné, 1758)</td>
<td>L24489 Z29550</td>
</tr>
<tr>
<td>Lithophaginae</td>
<td>Brachidontes variabilis (Krauss, 1848) §</td>
<td>AJ389643 AJ307536</td>
</tr>
<tr>
<td>Pinnoidea</td>
<td>Gregariella coarctata (Carpenter, 1856) §</td>
<td>AJ414641 AJ307538</td>
</tr>
<tr>
<td>Pinnidae</td>
<td>Atrina pectinata (Linné, 1767) ‡</td>
<td>X90961 AJ307557</td>
</tr>
<tr>
<td>Pteroidea</td>
<td>Pteridae</td>
<td>Pteria macroptera (Lamarck, 1819) §</td>
</tr>
<tr>
<td>Isognomonidae</td>
<td>Pinctada margaritifera (Linné, 1758) §</td>
<td>AJ389638</td>
</tr>
<tr>
<td>Ostreoida</td>
<td>Pinctada radiata (Leach, 1814)</td>
<td>AF137032</td>
</tr>
<tr>
<td>Gryphaeidae</td>
<td>Electroma alacorvi (Dillwyn, 1817) §</td>
<td>AJ389641 AJ307549</td>
</tr>
<tr>
<td>Pulvinitidae</td>
<td>Pulvinates exempla (Hadley, 1914) *</td>
<td>AJ414640 AJ307540</td>
</tr>
<tr>
<td>Isognomonidae</td>
<td>Isognomon legumen (Gmelin, 1791) §</td>
<td>AJ389639 AJ307551</td>
</tr>
<tr>
<td>Ostreoida</td>
<td>Malvifundus regulatus (Forsskal, 1775) §</td>
<td>AJ389640 AJ307547</td>
</tr>
<tr>
<td>Gryphaeidae</td>
<td>Hyoiliss cf. hyotis (Linné, 1758)</td>
<td>AJ389632 AF137036</td>
</tr>
</tbody>
</table>
Tabelle 7: Taxa, die in der phylogenetischen Analyse der 18S rDNA zusammen mit der 28S rDNA verwendet wurden, mit Erstbeschreibung, Sammelort und jener Zugriffsnummer (Accession Number), mit der sie in den DDBJ-, Embl- und GenBank-Datenbanken hinterlegt sind. Taxa, die im Zuge dieser Arbeit sequenziert wurden, sind fettgedruckt. Fußnoten korrespondieren mit folgenden Sammelorten:

> Ägäisches Meer (Griechenland); † Rovinj (Nördliche Adria, Kroatien); § Safaga Bay (Rotes Meer, Ägypten); * National Museum von Neuseeland – NMNZ (Pazifik, Neuseeland); & Taboga Island (Golf von Panama, Panama)
III. ERGEBNISSE

III.1. 18S rDNA-Phylogenie der pteriomorphen Bivalvia ... 60

III.1.1. Erhaltene 18S rDNA-Sequenzen ... 60
III.1.2. Phylogenetische Beziehungen höherer Taxa ... 61
III.1.3. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 65

III.2. 28S rDNA-Phylogenie der pteriomorphen Bivalvia ... 68

III.2.1. Erhaltene 28S rDNA-Sequenzen ... 68
III.2.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 69

III.3. 18S+28S rDNA-Phylogenie der pteriomorphen Bivalvia .. 73

III.3.1. Erhaltene 18S- und 28S rDNA-Sequenzen ... 73
III.3.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha ... 74
III.1. 18S rDNA-Phylogenie der pteriomorphen Bivalvia

III.1.1. Erhaltene 18S rDNA-Sequenzen

- Partielle 18S rDNA-Sequenzen wurden aus dem Datensatz exkludiert (Ausnahmen: *Gregariella coarctata* und *Pulvinites exempla*, deren Sequenzen zum damaligen Zeitpunkt noch nicht vorlagen). Von *Solemya togata* (Protobranchia) konnte die vollständige Sequenz der 18S rDNA ermittelt werden.
- Aufgrund der erhaltenen 18S rDNA-Sequenz und einer taxonomischen Nachbestimmung wurde das vermeintliche Taxon *Dentalium laqueatum* Verrill, 1885 (Dentaliida, Scaphopoda) nun als Sipunculida indet. (Sipuncula) klassifiziert.

Jenes Alignment, das für die phylogenetische Analyse verwendet wurde, bestand aus 2083 Merkmalen (= Nukleotide, Basenpaare), von welchen 1093 konstant waren; 333 variable Merkmale waren nicht informativ („parsimony-uninformative“), 657 Merkmale waren informativ („parsimony-informative“).
Tabelle 8: Auflistung jener Taxa, deren 18S rDNA im Zuge dieser Arbeit sequenziert wurde mit der Länge der erhaltenen Sequenz. Bp Basenpaare. ‡50% der 18S rDNA beginnend vom 5'-Ende sequenziert.

III.1.2. Phylogenetische Beziehungen höherer Taxa

Die Parsimonie-Analyse (heuristische Suche) mit dem Programm PAUP* ergab 106946 MPT („most parsimonious trees” = sparsamste Bäume), wobei *Scutopus ventrolineatus* (Caudofoveata) als Außengruppe diente. Der „strict consensus“-Baum (Länge = 3413 Schritte) der Parsimonie-Analyse (Abb. 23) wurde als Ausgangsbasis für die Berechnung der Maximum-Likelihood-Parameter (PAUP*, fastDNAml) mit anschließendem „branch swapping“ herangezogen. Der finale ML-Baum (Abb. 24a, b und 25) weist einen –Ln likelihood-Wert von 21588,34462 auf. Die Transitions/Transversions-Rate beträgt 1,202349 (kappa = 2,398834) und der Gamma-Shape-Parameter alpha = 0,465545. Der Consistency-Index (CI) hat einen Wert von 0,37 und der Rescaled-Consistency-Index (RC) = 0,26, wodurch der Homoplasie-Index (HI) 0,63 beträgt. Für die Beurteilung der Robustheit der Äste bzw. der Knoten der ermittelten Bäume wurden folgende Indizes berechnet (Abb. 23 und 24): Bootstrap-Werte (PAUP*), Bremer- oder Decay-Index (Bremer 1988, 1994), sowie Puzzle-Index (PUZZLE 4.0).

Auffallend sind vor allem die niedrigen Indizes der tiefen Knoten die – mit geringen Ausnahmen – unter 50% liegen (Bootstrap- und Puzzle-Indizes) bzw. ≤5 sind (Bremer- oder Decay-Index). Die Monophylie der Bivalvia ist nicht unterstützt, da einerseits *Liophora japonica* (Polyplacophora) entweder innerhalb der Heterodonta oder an der Basis der Protobranchia positioniert ist. Andererseits ist jener Knoten, der die Gruppierung ((Pteriomorpha, Protobranchia) Heterodonta) von den Gastropoda trennt nur sehr gering unterstützt, was sich in den Werten 29/34/321 der Indizes bestätigt (Abb. 23 und 24).

Liophora japonica bildet in dem „strict consensus“-Baum der Parsimonie-Analyse (Abb. 23) eine

21 Die Reihenfolge der Indizes ist: Bootstrap (in %) / Puzzle (in %) / Bremer- oder Decay-Index.
Schwesterngruppe zu den Protobranchia, ist aber hingegen in dem ML-Baum (Abb. 24a und 25) an der Basis der Gruppierung (Heterodontonta, Tropidomya abbreviata – Anomalodesmata) positioniert. Im ML-Baum ist Tropidomya abbreviata die Schwesterngruppe zu den Lucinoidea, im „strict consensus“-Baum der Parsimonie-Analyse hingegen formen Tropidomya abbreviata und Galeomma takii (Galeommatidae) eine Polytomie inmitten der Heterodontonta. Sipunculida indet. (Sipuncula) bildet im „strict consensus“-Baum der Parsimonie-Analyse mit Scutopus ventrolineatus (Caudofoveata – Außengruppe) an der Basis des Baumes eine Polytomie; im ML-Baum hingegen ist ebenfalls an der Basis des Baumes das Taxon Sipunculida indet. die Schwesterngruppe zu den Scaphopoda. Für die Gruppierung (Protobranchia, Lilophura japonica) ist mit 15/2/1 im Grunde keine Unterstützung gegeben; gleiches gilt auch für den Knoten ((Protobranchia, Lilophura japonica) Pterimorpha) mit den Indizes <5/<1/1; im Gegensatz dazu sind die Pteriomorpha mit den Werten 70/30/5 gut unterstützt.

Die Verzweigung der Pteriomorpha hat eine deutlich höhere Unterstützung als jener der Heterodontonta und spaltet sich in zwei Linien auf (Abb. 24a, b), wobei die beiden entsprechenden Knoten mit den Werten 21/26/1 bzw. 15/1/1 nur schwach unterstützt sind. Die eine Aufspaltung ist zusammengesetzt aus den Arcoidea an der Basis, gefolgt von den Anomioidea und Plicatula plicata (Plicatulidae) als Schwesterngruppe zu den Limidae und Pectinoidea. Die andere Linie würde sich wiederum in zwei Gruppen auftrennen, allerdings ist auch in diesem Fall eine eindeutige Absicherung der Gruppierung (Pinnidae (Pterioidea, Ostreoidea)) nicht gegeben (Abb. 24a, b). Anders ist die Situation für die Mytiloidea, da diese sowohl im „strict consensus“-Baum der Parsimonie-Analyse als auch im ML-Baum mit 100/97/14 sehr gut unterstützt sind. Im „strict consensus“-Baum der Parsimonie-Analyse zeigt die Linie ((Pinnidae (Pterioidea, Ostreoidea)) Mytiloidea) des ML-Baumes eine abweichende Topologie: Die Pinnidae und die Gruppe (Ostreoidea, Pterioidea) bilden eine Polyomie, die allerdings in beiden Fällen sehr robust abgesichert ist, und die Mytiloidea stehen solitärd dazu in einem Schwesterngruppenverhältnis. Für die Pterioidea, Limidae, Gryphaeidae und Mytiloidea wurden Bremer-Indizes zwischen 14 und 21 ermittelt, wobei die Pterioidea mit 21 den höchsten Wert aufweisen. Die Bootstrap-Werte liegen bei 99 bzw. 100%. Bei den Pectinidae, Spondylidae, Anomiidae, Pinnidae, Arcoidea und Ostreidae wiederum konnten Bremer-Indizes von 7 bis 11 festgestellt werden, wobei die Ostreidae mit 7 den niedrigsten Wert aufweisen. Hier befinden sich die Bootstrap-Werte in einem Bereich von 96 bis 100%, wodurch die Familiengruppen der Pteriomorpha sehr gut unterstützt sind.
Abb. 24a: Maximum-Likelihood-Baum des 18S rDNA-Datensatzes mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index aus der Parsimonie-Analyse (Farbkodierung siehe Kapitel V.2.2.). Zum besseren Überblick sind die Großgruppen grafisch zusammengefaßt, wobei die Größe der Dreiecke die Anzahl der Taxa und die jeweiligen Astlängen repräsentiert. Die Details zeigt der ML-Baum in Abb. 24b und 25.
III.1.3. Phylogenetische Beziehungen innerhalb der Pteriomorpha

Arcoidea

In beiden Analysen ist *Arca noae* (Arcidae) das basale Taxon der Arcoidea, jedoch sind die Arcidae nicht monophyletisch. Im Gegenteil, die beiden Arcidae, *Acar plicata* und *Barbatia virescens*, bilden zusammen mit *Striarca lactea* (Noetiidae) eine Polytomie (Abb. 23). Der „strict consensus“-Baum der Parsimonie-Analyse (Abb. 23) zeigt eine paraphyletische Situation für die Arcidae im Verhältnis zu *Striarca lactea* (Noetiidae) und den beiden Glycimerididae; im ML-Baum (Abb. 25) hingegen sind diese beiden Familien innerhalb der Arcidae positioniert, und die Astlängen lassen nicht unbedingt auf die oben erwähnte Polytomie schließen. Die basale Stellung von *Arca noae* hat mit 8 den höchsten Bremer-Index im Vergleich zu den übrigen internen Ästen der Arcoidea.

Pectinoidea (Spondylidae und Pectinidae)

Ostreoidea (Gryphaeidae und Ostreidae)

Das Schwesterngruppenverhältnis der Gryphaeidae und Ostreidae ist mit hohen Indizes (100/87/31) sehr gut unterstützt, obwohl der Bremer-Index für die Ostreidae mit 7 relativ niedrig ist. Dies drückt sich sowohl in der Polytomie der untersuchten Ostreidae (Ostreinae, Lophinae, Crassostreinae) im „strict consensus“-Baum der Parsimonie-Analyse, wie auch in den kurzen Astlängen des ML-Baumes aus.

Pterioidea

Mytiloidea

ML-Baum: Die Mytiloidea spalten sich sozusagen in zwei Clades auf. Die Lithophaginae stehen im ersten Clade basal zu den Mytilinae und Crenelliniae, wobei letztere innerhalb der Mytilinae als

Abb. 24b: Detailansicht des Maximum-Likelihood-Baumes aus Abb. 24a für die Pteriomorpha. Mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index.
III.2. 28S rDNA-Phylogenie der pteriomorphen Bivalvia

III.2.1. Erhaltene 28S rDNA-Sequenzen

<table>
<thead>
<tr>
<th>Art</th>
<th>Länge in bp</th>
<th>Art</th>
<th>Länge in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acar plicata</td>
<td>1138</td>
<td>Malvifundus regulatus</td>
<td>1140</td>
</tr>
<tr>
<td>Aequipecten opercularis</td>
<td>1142</td>
<td>Mimachlamys varia</td>
<td>1145</td>
</tr>
<tr>
<td>Anomia ephippium</td>
<td>1138</td>
<td>Modiolus auricularis</td>
<td>1141</td>
</tr>
<tr>
<td>Arca noae</td>
<td>1155</td>
<td>Nuculana pella</td>
<td>1144</td>
</tr>
<tr>
<td>Atrina pectinata</td>
<td>1157</td>
<td>Pedum spondyloideum</td>
<td>1088</td>
</tr>
<tr>
<td>Brachidontes variabilis</td>
<td>1138</td>
<td>Pinna muricata</td>
<td>1156</td>
</tr>
<tr>
<td>Ctena divergens</td>
<td>1145</td>
<td>Plicatula plicata</td>
<td>1165</td>
</tr>
<tr>
<td>Ctenoides annulatus</td>
<td>1239</td>
<td>Pododesmus caelata</td>
<td>1136</td>
</tr>
<tr>
<td>Dimyaria maoria</td>
<td>1166</td>
<td>Pteria macroptera</td>
<td>1148</td>
</tr>
<tr>
<td>Diplodonta cl. subrotundata</td>
<td>1184</td>
<td>Pulvinites exempla</td>
<td>1148</td>
</tr>
<tr>
<td>Electroma alacorvi</td>
<td>1144</td>
<td>Saccostrea cucullata</td>
<td>1186</td>
</tr>
<tr>
<td>Exellichlamys spectabilis</td>
<td>1145</td>
<td>Septifer cl. bilocularis</td>
<td>1161</td>
</tr>
<tr>
<td>Flexopecten glaber</td>
<td>1144</td>
<td>Solemya togata</td>
<td>1151</td>
</tr>
<tr>
<td>Glycymeris pedunculus</td>
<td>1139</td>
<td>Spondylus crassisquamatus</td>
<td>1161</td>
</tr>
<tr>
<td>Gregariella coarctata</td>
<td>1171</td>
<td>Spondylus hystrix</td>
<td>1158</td>
</tr>
<tr>
<td>Isognomon legumen</td>
<td>1148</td>
<td>Vulsella sp.</td>
<td>1101</td>
</tr>
<tr>
<td>Lima lima</td>
<td>1201</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(22) Die Domänen I-III befinden sich am „Anfang“ der 28S rDNA (= 5′-Ende).
Jenes Alignment, das für die phylogenetische Analyse verwendet wurde, bestand aus 1021 Merkmalen (= Nukleotide, Basenpaare), von welchen 422 konstant waren; 155 variable Merkmale waren nicht informativ; 444 Merkmale waren informativ. Im Kapitel IV.1. wird eine Re-Analyse des 28S rDNA-Datensatzes präsentiert, die mit dem aktualisierten Datensatz aus Kapitel V.2.4. durchgeführt wurde und zusammen mit den hier dargestellten Ergebnissen diskutiert wird.

III.2.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha

Die Parsimonie-Analyse (heuristische Suche) mit dem Programm PAUP* ergab 2 MPT („most parsimonious trees“ = sparsamste Bäume), wobei *Solemy togata* und *Nuculana pella* (beide Protobranchia) als Außengruppe dienten. Der „strict consensus“-Baum (Länge = 1936 Schritte) der Parsimonie-Analyse wurde als Ausgangsbasis für die Berechnung der Maximum-Likelihood-Parameter (PAUP*, fastDNAml) mit anschließendem „branch swapping“ herangezogen. Der finale ML-Baum (Abb. 26 und 27) weist einen \(-\text{Ln likelihood}\) von 11737,18953 auf. Die Transitions/ Transversions-Rate beträgt 1,3921 (kappa = 2,84433) und der Gamma-Shape-Parameter alpha = 0,5241. Der Consistency-Index CI hat einen Wert von 0,45 und der Rescaled-Consistency-Index (RC) = 0,30, wodurch der Homoplasie-Index (HI) 0,55 beträgt. Für die Beurteilung der Robustheit der Äste bzw. der Knoten der ermittelten Bäume wurden folgende Indizes berechnet (Abb. 26 und 27): Bootstrap-Werte (PAUP*), Bremer- oder Decay-Index (Bremer 1988, 1994), sowie Puzzle-Index (PUZZLE 4.0).

Der „strict consensus“-Baum (Abb. 26), sowie der ML-Baum (Abb. 27) zeigen auch bei dieser Analyse, daß die Pteriomorpha und deren Familiengruppen solide unterstützt sind. Die Indizes für den gesamten Ast der Pteriomorpha betragen 53% (Bootstrap), 85% (Puzzle), der Bremer-Index beträgt allerdings nur 2. Im ML-Baum stehen die Mytiloidea an der Basis des Astes der Pteriomorpha und sind mit Werten von 100% (Bootstrap), 55% (Puzzle), sowie 11 (Bremer-Index) sehr robust unterstützt. Die übrigen Familiengruppen der Pteriomorpha bilden zwar einen eigenen Clade, dessen basaler Knoten mit einem Bremer-Index von 2 allerdings sehr schwach unterstützt ist. Innerhalb dieser Gruppierung ist eine Aufspaltung in zwei Linien erkennbar. Die Limidae sind die Schwestergruppe zu den Pectinoidea und bilden zusammen mit der Gruppierung (Plicatulidae (Dimyidae, Anomiidae)) den einen Clade, demgegenüber die Arcoidea die basale Schwestergruppe zu (Ostreoidea (Pinnidae, Pterioidea)) darstellen. Die basalen Knoten dieser beiden Linien sind ebenfalls nicht sehr gut unterstützt, da im ersten Fall die Bootstrap- und Puzzle-Werte unter 50% und der Bremer-Index bei 4 liegen; für den zweiten Clade beträgt der Bremer-Index sogar 0 und der Bootstrap-Wert ist niedriger als 25%. Diese Situation spiegelt sich auch im „strict consensus“-Baum der Parsimonie-Analyse wider, denn alle Familiengruppen bilden eine Polytomie, da jene Äste, deren Unterstützung unter 50% liegt, kollabiert wurden. Sowohl im „strict consensus“-Baum als auch im ML-Baum weisen bei den Familiengruppen der Pteriomorpha die Mytiloidea und Pterioidea sowie die Limidae und die Pectinoidea mit 11 und 14 bzw. 9 die niedrigsten Bremer-Indizes auf; im Vergleich dazu sind die Anomioidea (plus Plicatulidae), die Arcoidea und die Ostreoidea mit Bremer-Indizes von 20, 24 und 50 äußerst robust unterstützt.

Mytiloidea

Sowohl im „strict consensus“-Baum als auch im ML-Baum steht *Modiolus auriculatus* (Modiolinae) an
Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 70

der Basis der Mytiloidea, gefolgt von den drei Vertretern der Mytilinae. Das Schwestern-
gruppenverhältnis von *Brachidontes variabilis* (Mytilinae) zu den beiden anderen Mytilinae ist schlechter
unterstützt als das Schwesternverhältnis zwischen denselbigen (Bremer-Indizes 5 bzw. 7). Die
systematische Zuordnung von *Gregariella coarctata* zu den Mytilinae konnte bestätigt werden.

Anomioidea (plus Plicatulidae)

Die Gruppierung (Plicatulidae (Anomiidae, Dimyidae)) ist in beiden Bäumen (Abb. 26 und 27) mit
einem Bremer-Index von 20 (100% – Bootstrap, 74% – Puzzle) gut unterstützt. *Plicatula plicata*
(Plicatulidae) steht in in einem basalen Schwesterngruppenverhältnis zu den monophyletischen
Anomiidae. Dieser Knoten ist mit einem Bootstrap-Wert von 83% (Puzzle-Index ist 78%) und mit einem
Bremer-Index von 5 durchaus solide abgesichert.

Pectinoidea (Spondylidae und Pectinidae)

Spondylus crassisquamatus (Spondylidae) steht an der Basis der Pectinoidea und die Monophylie der
Pectinidae ist mit sehr hohen Bootstrap-Werten (100%, Puzzle-Index ist 90%) und überzeugenden
Bremer-Indizes im Bereich von 10, 14 und 29 sehr robust.

Arcoidea

Glycymeris pedunculus (Glycymerididae) steht im ML-Baum an der Basis der Arcoidea. Die Arcidae
sind monophyletisch, aber das Schwesterngruppenverhältnis zwischen den beiden Vertretern der
Arcidea und *Glycymeris pedunculus* ist nur sehr schwach unterstützt (<50% – Bootstrap, <90% – Puzzle,
0 – Bremer-Index). Die Topologie des „strict consensus“-Baumes löst die intra-familiären Beziehungen
der Arcoidea nicht auf, da eine Polytomie vorhanden ist.

Ostreoidea (Gryphaeidae und Ostreidae)

Die hohe Unterstützung für die Familiengruppe der Ostreoida setzt sich auch bei der Höhe der
Bremer-Indizes für das Schwesterngruppenverhältnis zwischen Gryphaeidae und Ostreidea mit 38 bzw.
18 fort. Innerhalb der Ostreidae sind in beiden Bäumen die Crassostreinae monophyletisch und die
Ostreinae und die Lophinae sind Schwesterngruppen.

Pterioidea (plus Pinnidae)

Atrina pectinata, die einzige Vertreterin der Pinnidae in diesem Datensatz (vgl. dazu Kapitel IV.1.),
steht im ML-Baum an der Basis der Pterioidea, jedoch ist die Unterstützung mit Werten von <24% (Bootstrap), <70% (Puzzle) und einem Bremer-Index von 0 nicht sehr robust, was sich auch in der
Polytomie von *Atrina pectinata* im „strict consensus“-Baum der Parsimonie-Analyse zeigt. *Electroma
alacorvi* (Pteriidae) steht an der Basis der Pterioidea, gefolgt von den drei übrigen Pteriidae, sowie
Malvifundus regulatus (Malleidae) und den beiden Vertretern der Isognomonidae. Im „strict consensus“-
Baum ist das Verhältnis zwischen *Pinctada radiata* (Pteriidae) und *Malvifundus regulatus* (Malleidae) nicht
aufgelöst. Sehr interessant ist das in beiden Fällen überaus gut unterstützte Schwesterngruppenverhältnis zwischen den beiden Pteriidae, *Pulvinites exempla* und *Pteria macroptera*.
Vergleichbare Bremer-Indizes in dieser Höhe (26) wurde nur bei den Pectinidae (29), den Gryphaeidae
(38) oder den Arcoidea (24) gefunden. Die systematische Zuordnung von *Pulvinites exempla* zu den
Pteriidae konnte bestätigt werden.
Abb. 26: „Strict Consensus“-Baum der Parsimonie-Analyse des 28S rDNA-Datensatzes mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index. MPT = 2, L = 1936, CI = 0,45, RC = 0,30.
Abb. 27: Maximum-Likelihood-Baum des 28S rDNA-Datensatzes mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index aus der Parsimonie-Analyse.
III.3. 18S+28S rDNA-Phylogenie der pteriomorphen Bivalvia

III.3.1. Erhaltene 18S- und 28S rDNA-Sequenzen

Von den insgesamt 44 untersuchten Taxa wurde von 29 Taxa sowohl die 18S- wie auch die 28S rDNA-Sequenzen ermittelt, welche bereits in den DDBJ-, EMBL- und GenBank-Datenbanken hinterlegt wurden. Die dafür vergebenen Zugriffsnummern (Accession Numbers) sind in Kapitel V.2.5. (Tab. 13) angeführt. Die Länge der 18S+28S rDNA von den untersuchten Taxa umfaßt einen Bereich von 2684 Basenpaaren (Solemya togata, Protobranchia) bis zu 2985 Basenpaaren (Ctenoides annulatus, Pteriomorpha). In Tabelle 10 sind alle untersuchten Taxa mit der jeweils erhaltenen Länge der 18S+28S rDNA-Sequenz aufgeführt. Für die phylogenetische Analyse wurden 32 Taxa ausgewählt, die im Kapitel II.4.2.3. (Tab. 7) aufgeführt sind, wobei 22 Taxa aus der vorliegenden Arbeit stammen. Die übrigen 10 der 18S+28S rDNA-Sequenzen wurden den Datenbanken DDBJ, EMBL und GenBank entnommen. Für die phylogenetische Analyse der ausgewählten Taxa wurden die beiden Sequenz-Alignments aus der 18S und 28S rDNA-Analyse kombiniert, wobei jene Lücken manuell entfernt wurden, die aufgrund des notwendigen Eliminierens von zahlreichen Taxa entstanden waren.

Jenes Alignment, das für die phylogenetische Analyse verwendet wurde, bestand aus 3121 Merkmalen (= Nukleotide, Basenpaare), von welchen 1988 konstant waren; 385 variable Merkmale waren nicht informativ, 748 Merkmale waren informativ.

<table>
<thead>
<tr>
<th>Art</th>
<th>Länge in bp</th>
<th>Art</th>
<th>Länge in bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acar plicata</td>
<td>2876</td>
<td>Modiolus auriculatus</td>
<td>2876</td>
</tr>
<tr>
<td>Aequipecten opercularis</td>
<td>2862</td>
<td>Nuculana pella</td>
<td>2885</td>
</tr>
<tr>
<td>Anomia ephippium</td>
<td>2800</td>
<td>Pedum spondyloideum</td>
<td>2824</td>
</tr>
<tr>
<td>Brachidontes variabilis</td>
<td>2873</td>
<td>Pinna muricata</td>
<td>2892</td>
</tr>
<tr>
<td>Ctena divergens</td>
<td>2883</td>
<td>Plicatula plicata</td>
<td>2900</td>
</tr>
<tr>
<td>Ctenoides annulatus</td>
<td>2985</td>
<td>Pododesmus caelata</td>
<td>2871</td>
</tr>
<tr>
<td>Diplodonta cf. subrotundata</td>
<td>2956</td>
<td>Pteria macroptera</td>
<td>2896</td>
</tr>
<tr>
<td>Electroma alacorvi</td>
<td>2889</td>
<td>Pulvinites exempla</td>
<td>2055</td>
</tr>
<tr>
<td>Exellichlamys spectabilis</td>
<td>2883</td>
<td>Saccostrea cucullata</td>
<td>2898</td>
</tr>
<tr>
<td>Flexopecten glaber</td>
<td>2798</td>
<td>Septifer cf. bilocularis</td>
<td>2898</td>
</tr>
<tr>
<td>Glycymeris pedunculus</td>
<td>2820</td>
<td>Solemya togata</td>
<td>2684</td>
</tr>
<tr>
<td>Gregariella coarctata</td>
<td>2023</td>
<td>Spondylus crassiquamatus</td>
<td>2900</td>
</tr>
<tr>
<td>Isognomon legumen</td>
<td>2866</td>
<td>Spondylus hystrix</td>
<td>2893</td>
</tr>
<tr>
<td>Lima lima</td>
<td>2843</td>
<td>Vulsella sp.</td>
<td>2851</td>
</tr>
<tr>
<td>Malvifundus regulatus</td>
<td>2862</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 10: Auflistung jener Taxa, deren 18S und 28 rDNA im Zuge dieser Arbeit sequenziert wurde mit der Länge der erhaltenen Sequenz. Bp Basenpaare. □ 50% der 18S rDNA beginnend vom 5'-Ende sequenziert.
III.3.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha

Die Parsimonie-Analyse (heuristische Suche) mit dem Programm PAUP* ergab 1 MPT („most parsimonious tree“ = sparsamsten Baum), wobei Solemya togata und Nuculana pella (beide Protobranchia) als Außengruppe dienten. Der MPT (Länge = 1330 Schritte) der Parsimonie-Analyse wurde als Ausgangsbaum für die Berechnung der Maximum-Likelihood-Parameter (PAUP*, fastDNAml) mit anschließendem „branch swapping“ herangezogen. Der finale ML-Baum (Abb. 28 und 29) weist einen –Ln likelihood-Wert von 20881,42523 auf. Die Transitions/ Transversions-Rate beträgt 1,223362 (kappa = 2,445764) und der Gamma-Shape-Parameter alpha = 0,238411. Der Consistency-Index CI hat einen Wert von 0,46 und der Rescaled-Consistency-Index (RC) = 0,30, wodurch der Homoplasie-Index (HI) 0,54 beträgt. Für die Beurteilung der Robustheit der Äste bzw. der Knoten der ermittelten Bäume wurden folgende Indizes berechnet (Abb. 28 und 29): Bootstrap-Werte (PAUP*), Bremer- oder Decay-Index (Bremer 1988, 1994), sowie Puzzle-Index (PUZZLE 4.0).

Der MPT der Parsimonie-Analyse (Abb. 28) und der ML-Baum (Abb. 29) zeigen auch bei dieser Analyse, daß die Pteriomorpha im Allgemeinen und deren Familiengruppen im Speziellen recht solide unterstützt sind, wobei die Werte hier generell höher sind als bei den Analysen der 18S oder 28S rDNA (vgl. Abb. 24a, b; 26 und 27). Die Indizes für den gesamten Ast der Pteriomorpha betragen 99% (Bootstrap), 68% (Puzzle) und der Bremer-Index ist 27. Die Mytiloidea stehen an der Basis des Astes der Pteriomorpha und sind mit Werten von 100% (Bootstrap), 61% (Puzzle) sowie 31 (Bremer-Index) äußerst robust unterstützt. Die übrigen Familiengruppen der Pteriomorpha bilden einen eigenen Clade, dessen basaler Knoten allerdings etwas schwächer unterstützt ist (76% – Bootstrap, <50% – Puzzle, 10 – Bremer-Index). Innerhalb dieser Gruppierung ist eine Aufspaltung in zwei Linien erkennbar. Die Limidae haben ein Schwesterngruppenverhältnis zu den Pectinoidea und bilden zusammen mit der Gruppierung (Plicatulidae, Anomiidae) den einen Clade, an dessen Basis die Arcoidea positioniert sind; demgegenüber bilden die Pinnidae die basale Schwesterngruppe zu (Ostreoidea, Pterioidea). Die basalen Knoten dieser beiden Linien sind nicht sehr gut unterstützt, denn im ersten Fall liegen die Indizes sogar nur bei <25% (Bootstrap) und 0 (Bremer-Index), aber für den zweiten Clade beträgt die Unterstützung knapp über 50% (54% – Bootstrap) und 9 (Bremer-Index). Hinsichtlich der Familiengruppen der Pteriomorpha weisen die Pectinoidea mit 14 den niedrigsten Bremer-Index auf; im Vergleich dazu sind die Mytiloidea, die Pterioidea sowie die Anomoidea (plus Plicatulidae) und die Arcoidea mit Bremer-Indizes von 31, 34, 39 und 40 äußerst robust unterstützt. Diese Werte werden sogar noch von den Limidae und den Ostreoidea übertroffen, da diese beiden Familiengruppen die höchsten Bootstrap-Werte, wie auch die höchsten Bremer-Indizes (57 bzw. 84) zeigen. Die beiden Analysen führen zu ähnlichen Topologien, wobei jedoch im MPT der Parsimonie-Analyse die Position der Gruppierung ((Plicatulidae, Anomiidae) Limidae, Pectinoidea) nicht zufriedenstellend aufgelöst ist.

Mytiloidea

Beiden Analysen ergaben, daß Modiolus auriculatus (Modiolinae) an der Basis der Mytiloidea steht, gefolgt von den drei Vertretern der Mytilinae. Das Schwesterngruppenverhältnis von Brachidontes variabilis (Mytilinae) zu den beiden anderen Mytilinae ist schlechter unterstützt als das
Schwesterngruppenverhältnis zwischen denselbigen (Bremer-Indizes 10 bzw. 12). Die systematische Zuordnung von *Gregariella coarctata* zu den Mytilinae konnte bestätigt werden.

Anomioidea (plus Plicatulidae)

Pectinoidea (Spondylidae und Pectinidae)

Als Resultat von beiden Analysen steht *Spondylus crassisquamatus* (Spondylidae) an der Basis der Pectinoidea und die Monophylie der Pectinidae ist mit sehr hohen Bootstrap-Werten (100%; 93% – Puzzle) und einem überzeugenden Bremer-Indizes von 39 sehr gut unterstützt.

Arcoidea

Die Arcidae sind in keinem der beiden Bäume monophyletisch, da *Glycymeris pedunculus* (Glycymerididae) die Schwesterngruppe von *Acar plicata* (Arcidae) ist und die zweite Arcidae *Arca noae* an der Basis der Arcoidea positioniert ist. Das Schwesterngruppenverhältnis zwischen *Glycymeris pedunculus* und *Acar plicata* ist mit einem Bootstrap-Wert von 93% (64% – Puzzle) sowie einem Bremer-Index von 6 unterstützt.

Ostreoidea (Gryphaeidae und Ostreidae)

Die hohe Unterstützung für die Familiengruppe der Ostreoidea setzt sich auch bei der Höhe der Bremer-Indizes für das Schwesterngruppenverhältnis zwischen Gryphaeidae und Ostreidea mit 65 bzw. 30 fort. Beide Analysen zeigen, daß innerhalb der Ostreidae die Ostreinae und die Lophinae Schwesterngruppen sind, und die Monophylie der Crassostreinae ist eindeutig gegeben (100% – Bootstrap und Puzzle, sowie 25 – Bremer-Index).

Pterioidea (plus Pinnidae)

Die Topologie des MPT der Parsimonie-Analyse ist mit jener des ML-Baumes nahezu kongruent, wodurch sich zeigt, daß die Kombination von beiden Genen grundsätzlich konsistentere Ergebnisse in der phylogenetischen Analyse liefert. Weiters zeigen die Indizes eine höhere Unterstützung der einzelnen Äste, wodurch die Familiengruppen der Pteriomorpha und deren Zusammensetzung sehr robust unterstützt sind, und die phylogenetischen Beziehungen innerhalb der Pteriomorpha besser aufgelöst werden konnten als in der Analyse der solitären Gene.
Abb. 28: MPT der Parsimonie-Analyse des 18S+28S rDNA-Datensatzes mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index. $L = 3013$, $CI = 0.46$, $RC = 0.30$.

Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 76
Abb. 29: Maximum-Likelihood-Baum des 18S+28S rDNA-Datensatzes mit den berechneten Indizes Bootstrap (%), Puzzle (%) und Decay- (= Bremer-) Index aus der Parsimonie-Analyse.
IV. DISKUSSION

IV.1. Phylogenie der Pteriomorpha ... 79
IV.1.1. Phylogenetische Beziehungen höherer Taxa 79
IV.1.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha 82

IV.2. Aussagekraft der molekularen Daten .. 85
IV.2.1. Sequenzalignments .. 85
IV.2.2. Transition/Transversionsraten ... 86
IV.2.3. Substitutionsraten .. 87

IV.3. Kongruenz zwischen morphologischen und molekularen Daten 89
IV.1. Phylogenie der Pteriomorpha

IV.1.1. Phylogenetische Beziehungen höherer Taxa

Falls nun die Bivalvia, so wie in Waller (1998) vorgeschlagen, tatsächlich relativ entfernt zu den anderen Klassen der Conchifera sind, so verschleiern die großen Astlängen jene Radiationen innerhalb der Mollusken, die im frühen Kambrium stattgefunden haben (Runnegar 1996). Daher ist nach wie vor unklar, welche Klasse der Mollusca die unmittelbare Schwesterngruppe zu den Bivalvia bildet. In der vorliegenden Arbeit weisen die Ergebnisse der Analyse des 18S rDNA-Datensatzes auf die Gastropoda oder die Polyplacophora als Schwesterngruppe zu der Gruppierung (Heteroconchia (Protobranchia, Pteriomorpha)) hin (Abb. 23 und 24a, b), nicht aber die Scaphopoda (vgl. Salvini-Plawen & Steiner 1996); allerdings ist die Klasse Polyplacophora mit nur einem Taxon im Vergleich zu den Gastropoda, die durch 5 Arten in der Analyse vertreten sind, deutlich unterrepräsentiert.

Die Ergebnisse von Campbell (2000) waren nun wie folgt. Die erste Analyse (Gaps als fehlende Daten) resultierte in einer monophyletischen Situation für die Bivalvia, die jedoch durch geringe Unterstützung der Knoten gekennzeichnet war; die zweite Analyse (Gaps als fünfter Merkmalszustand) zeigte hingegen keine Monophylie für die Bivalvia in Relation zu den übrigen untersuchten Mollusken, jedoch ist in beiden Fällen die Monophylie der Protobranchia, Pteriomorpha, Heterodonta, Palaeoheterodonta und Anomalodesmata bestätigt.

Abb. 30: Detailansicht für die Heteroconchia aus den Abbildungen 23 und 25; nähere Details siehe Kapitel III.1.2. und III.1.3. A „Strict Consensus“-Baum der Parsimonie-Analyse des 18S rDNA-Datensatzes; B Maximum-Likelihood-Baum des 18S rDNA-Datensatzes.
IV.1.2. Phylogenetische Beziehungen innerhalb der Pteriomorpha

Zwei Hauptlinien sind in allen Analysen zu finden, auch wenn die Unterstützung mit Ausnahme der kombinierten Analyse nicht sehr groß ist. Die Gruppierung (Pinnoidea (Pterioidea + Ostreoidea)) ist in der 18S rDNA-Analyse am schwächsten unterstützt; in der Analyse des 28S rDNA-Datensatzes ist eine Unterstützung von <50% (Bootstrap), knapp über 50% (Puzzle) und 2 (Bremer-Index) gegeben, die kombinierte Analyse führte mit 54% zu einem besseren Bootstrap-Wert und der Bremer-Index erhöhte sich auf 9. In der 18S rDNA-Analyse von Campbell (2000) wurde diese Topologie bestätigt (Mytiloidea basal dazu), allerdings ebenfalls mit schwacher Unterstützung. Für die zweite Linie bestehend aus ((Anomioidea + Plicatuloidea), (Limoidea + Pectinoidea)) ergibt sich ein ähnliches Bild, obwohl in diesem Fall die Analyse der 28S rDNA die robusteste Topologie liefert. Die Position der Pinnoidea variiert zwischen den ermittelten Topologien sehr deutlich. In den Analysen der 18S rDNA und des 18S+28S rDNA-Datensatzes sind sie die Schwesterngruppe zu (Pterioidea + Ostreoidea), und in der Analyse der 28S rDNA bilden sie die Schwesterngruppe zu den Pterioidea. Diese unterschiedlichen Ergebnisse lassen mögliche Rückschlüsse auf den Ursprung der Pinnoidea zu, der auf einen ähnlichen Zeitrahmen wie jener der Arcoidea und Mytiloidea zurückgehen dürfte. In Campbell (2000) findet sich die Gruppierung (Arcoidea ((Anomioidea + Plicatuloidea), Pectinoidea)), die niedrige Indizes aufweist, wobei die Limoidea nicht vertreten sind.

Molleidae (Pterioidea), repräsentiert durch *Malvifundus regulatus* und *Vulsella* sp., ist in der Analyse der 18S rDNA sowie der aktualisierten Analyse der 28S rDNA ebenfalls nicht gegeben (Abb. 31).

Taxa, die im Zuge dieser Arbeit sequenziert wurden.
IV.2. Aussagekraft der molekularen Daten

IV.2.1. Sequenzalignments

Die Durchführung des Sequenzalignments stellt einen schwierigen aber auch entscheidenden Schritt in der phylogenetischen Analyse dar. Hier sind wir vor allem mit Längenvariationen der ermittelten Sequenzen in bestimmten Regionen konfrontiert, die z.B. die Schlaufen („loops“) bilden. Aus diesem Grund führt das Sequenzalignierungsverfahren nur in seltenen Fällen zu einem singulären Alignment, sodaß verschiedene Alignments in der Analyse getestet werden müssen, um das am besten geeignete zu finden. Zum Anderen sind Informationen über die Sekundärstrukturen sehr hilfreich, können aber auch zu irreführenden Resultaten führen. Falls nun z.B. bei einer bestimmten Art das eine Ende einer Stamm-Struktur aus einer konservierten Sequenz auf dem einen DNA-Strang besteht, auf dem zweiten Strang sich in dem korrespondierenden Abschnitt jedoch Substitutionen befinden, so wird in der Sekundärstruktur die Schlaufe relativ zum Stamm verlängert. Wenn nun hier das Sequenzalignementverfahren strikt der Sekundärstruktur folgt, so erhält man in diesem Fall ein Alignment, das schlechter den Kriterien der Parsimonie folgt, in dem es „weniger sparsam“ (less parsimonious) ist.

Diesen Problemen kann mit einer möglichst dichten taxonomischen Repräsentation von Arten zum Teil abgeholfen werden, da angenommen werden kann, daß die vorhandenen Zwischenformen eine Überleitung zu den exponierten Taxa darstellen und dadurch die Qualität des Alignments verbessert wird. Daher werden auch gelegentlich partielle Sequenzen in die Analysen einbezogen.

IV.2.2. Transitions/Transversionsraten

Die niedrige Transitions/Transversionsrate (s/v) von 1,2 spricht auch hier für eine bestimmte Saturierung dieses Gens, was bereits mit dem nicht so umfangreichen Datensatz von Steiner & Müller (1996) gezeigt wurde. Die Erosion des phylogenetischen Signals durch mehrfache Substitutionen betrifft in erster Linien erdgeschichtlich sehr alte Artbildungseignisse. Die tiefen Knoten der Bäume sind generell nicht sehr gut unterstützt und müssen daher mit größerer Vorsicht betrachtet werden als die höheren Verzweigungen. Andererseits sind die geringen s/v-Parameter, die im Zuge der ML-Analysen ermittelt wurden, irreführend bezüglich der Topologien in jüngerer Verzweigungen, da dort die beobachteten Parameter höher sind. Mehrere Analysen mit reduzierten Datensätzen, die nur aus Familien der Pteriomorpha bestanden, ergaben die gleichen Topologien wie der vollständige Datensatz. Die Topologie jener Bäume, die diese Artbildungs-prozesse widerspiegeln, hängt in jedem Fall weniger von den s/v-Parametern ab, als vielmehr von der Wahl bzw. der Zusammensetzung der Außengruppe ab.

Eine andere potentielle Fehlerquelle stellt die Strategie der Suche nach dem besten Baum in der
Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 87

IV.2.3. Substitutionsraten

Die berechneten Werte des „Relative Rate Test“ für den 18S rDNA-Datensatz (Abb. 32) zeigen für die Pteriomorpha die niedrigsten Substitutionsraten, die sich sowohl von den Heteroconchia wie auch von den übrigen Großgruppen der Mollusca signifikant (p<0,05) unterscheiden und sehr homogen sind. Innerhalb der Bivalvia weisen nur die Protobranchia ähnliche Werte auf wie die am schnellsten evolvierten Pteriomorpha, die Limizea. Die Substitutionsraten der Heteroconchia, Scaphopoda und Gastropoda sind deutlich heterogener als jene der Pteriomorpha, wobei die Heteroconchia den größten Bereich umfassen, und die Scaphopoda und Gastropoda einander sehr ähnlich sind. Bereits Steiner & Müller (1996) vermuteten den Grund für die Polyphylie der Bivalvia in den unterschiedlichen Substitutionsraten der einzelnen Großgruppen.

Vergleicht man die Substitutionsraten der beiden Gene (18S und 28S rDNA) miteinander so erhält man folgendes Bild (Abb. 33). Grundsätzlich sind die Substitutionsraten für die 28S rDNA deutlich höher als jene für die 18S rDNA und sie variieren auch wesentlich stärker (vgl. Ostreoidea und Arcoidea in Abb. 33). Dies trifft vor allem auf die Ostreoidea und Limidae der Pteriomorpha zu. Auch bei den Pectinoidea und den Anomioidea ist der Unterschied sehr deutlich zu sehen.

Auffallend ist auch, daß die Substitutionsraten bei der 28S rDNA heterogener sind als bei der 18S rDNA. Dennoch zeigt der „Relative Rate Test“ für die Familiengruppen der Pteriomorpha sehr eindrucksvoll, daß die 18S rDNA durch sehr geringe Unterschiede in der Variation der Substitutionsraten eine gleichmäßigere Verteilung des phylogenetischen Signals ausgedrückt. Die Substitutionsraten dieses Gens lassen ähnliche Peaks vermissen, wie jene, die in der 28S rDNA z.B. für die deutliche Unterstützung der Ostreoida im Vergleich zu anderen Familiengruppen der Pteriomorpha verantwortlich sind. Auch ist zu sehen, daß bei den Arcoidea, Mytiloidea und Pterioidea die Substitutionsraten der beiden Gene am ähnlichsten sind, und daß die Familiengruppen der Pteriomorpha auch hier sehr deutlich unterstützt sind.

IV.3. Kongruenz zwischen morpholog. und molek. Daten

Im Vergleich zur 18S rDNA wird die 28S rDNA verstärkt für die Auflösung von jüngeren Radiationen und für die Analyse der intraspezifischen Beziehungen innerhalb der Familiengruppen der Pteriomorpha herangezogen (Littlewood 1994; Park & Ó Foighil 2000; Ó Foighil & Taylor 2000; Distel 2000; Distel et al. 2000). Von diesem ribosomalen Gen verspricht man sich Information hinsichtlich jener Artbildungsprozesse, die in der Neuzeit (Känozoikum) - und hier vor allem im Paläozän bzw. an der Grenze von Kreide zu Tertiär - stattgefunden haben. Die 28S rDNA sollte demnach jenen erdgeschichtlichen Bereich abdecken, wo sich die 18S rDNA an der oberen Grenze ihres Auflösungspotentials befindet.
Die Analyse der 18S+28S rDNA-Sequenzen in Kombination (Abb. 28, 29 und 35F) zeigt, daß die Robustheit der Knoten grundsätzlich höher ist als bei der Analyse der einzelnen Gene. Leider stehen von den Bivalvia und anderen Klassen der Mollusca noch nicht genügend 28S rDNA-Sequenzen zur Verfügung, um hier eine großsystematische Analyse zu präsentieren. Die vorliegenden 28S rDNA-Daten können nur für die Pteriomorpha und Heterodonta interpretiert werden, wobei letztere erst in der Analyse des aktualisierten 28S rDNA-Datensatzes berücksichtigt wurden (Abb. 31).

V. ANHANG

V.1. Verwendete Lösungen und Chemikalien ... 94
 V.1.1. Enzyme, Puffer und Lösungen ... 94
 V.1.2. Verwendete Chemikalien und Enzyme ... 95

V.2. Verzeichnisse .. 97
 V.2.1. Zitierte Literatur .. 97
 V.2.2. Verwendete Abkürzungen ... 101
 V.2.3. Verzeichnis der Abbildungen und Tabellen ... 104
 V.2.4. 28S rDNA-Datenset (aktualisiert) .. 106
 V.2.5. Sequenzierte Taxa ... 108
 V.2.6. Bildtafeln der sequenzierten Pteriomorpha ... 109

V.3. Curriculum Vitae .. 115

V.4. Publikationen .. 118
V.1. Verwendete Lösungen und Chemikalien

V.1.1. Enzyme, Puffer und Lösungen

Proteinase K 20mg/ml in Aqua dest. (steril); Aliquots bei -20°C lagern

Dithiothreitol (DTT) 1M; 1ml: 154.2mg DTT in 1ml Aqua dest. (steril) lösen und 3.5µl 3M Na-Acetat zugeben.

RNase A 500µg/ml; bei -20°C lagern

PEG-Lösung 24% Polyethylenglycol 6000 in 3M NaCl steril filtrieren und bei 4°C lagern

TAE-Puffer 50x Stammlösung:
242g Tris-Base
57,1ml konzentrierte Essigsäure („Eisessig“)
100ml 0,5M EDTA (pH 8.0)
mit Aqua dest. auf 1 Liter auffüllen, autoklavieren, bei 4°C lagern
0,5x Laufpuffer: 50x Stammlösung 1:100 mit Aqua dest. verd.

Ethidiumbromid (EtBr) 10mg/ml in Aqua dest.

Ladepuffer Typ III 6x Stammlösung:
0,25% Bromphenolblau
0,25% Xylene Cyanol
30% (w/v) Glycerin in Aqua dest. (steril)
bei 4°C lagern
1x Ladepuffer Typ III: 6x Stammlösung mit 0,5x TAE-Puffer 1:6 verdünnen

1 kb-DNA-Leiter 100ng/µl in 1x Ladepuffer Typ III
Fragmente (kb): 0,25-0,5-0,75-1-1,5-2-2,5-3-4-5-6-8-10

Low-Range I DNA Molecular Marker 120ng/µl in 1x Ladepuffer Typ III
Fragmente (bp): 117, 224, 702, 1 264, 1 371, 1 929, 2 323, 3 675, 4 324, 4 822, 5 686, 6 369, 7 639, 8 454

Extraktions-Puffer 2% CTAB (Hexadecyltrimethylammoniumbromid)
0,2% 2-ß Mercaptoethanol
1,4M NaCl
20mM EDTA
100mM Tris-HCl, pH 8.0

Salt Solution 1,2M NaCl
0,06M MgCl2
(im TOPO TA Cloning® Kit enthalten)

X-Gal 40mg/ml in DMF (Dimethylformamid) (40 µl/Platte)
SOC-Medium

- 2% Trypton
- 0,5% Hefeextrakt
- 10mM NaCl
- 2,5mM KCl
- 10mM MgCl₂
- 10mM MgSO₄
- 20mM Glucose
 (im TOPO TA Cloning® Kit enthalten)

Luria-Bertani (LB) Medium

- 5g Hefeextrakt
- 10g Pepton, tryptisch verdaut
- 10g NaCl
 mit Aqua dest. auf 1 Liter auffüllen, autoklavieren, bei 4°C lagern

LB-Platten

- 100ml LB flüssig
- 1,5g Agar-Agar
- 100µl Ampicillin oder Kanamycin
- 40µl X-Gal
 bei 4°C maximal 14 Tage haltbar

Ampicillin

- 50mg/ml in Aqua dest. (steril)
 bei -20°C maximal 3 Monate haltbar

Kanamycin

- 50mg/ml in Aqua dest. (steril)
 bei -20°C maximal 3 Monate haltbar

Lösung I

- 50mM Glucose
- 25mM Tris-HCl (pH 8.0)
- 10mM EDTA

Lösung II

- 0.2N Na OH
- 1% SDS (Natriumdodecylsulfat)

Lösung III

- 3M Kaliumacetat
- 5M Essigsäure

V.1.2. Verwendete Chemikalien und Enzyme

<table>
<thead>
<tr>
<th>Chemikalien und Enzyme</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agar-Agar</td>
<td>AppliChem</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Serva</td>
</tr>
<tr>
<td>5-Bromo-4-Chloro-3-Indolyl-β-Galactopyranosid (X-Gal)</td>
<td>BTS</td>
</tr>
<tr>
<td>Chelex® 100 Resin</td>
<td>Sigma</td>
</tr>
<tr>
<td>Chloroform (CHCl₃)</td>
<td>Merck</td>
</tr>
<tr>
<td>Cleanmix</td>
<td>Talent</td>
</tr>
<tr>
<td>dATP, dCTP, dGTP, dTTP</td>
<td>Biomedica</td>
</tr>
<tr>
<td>Dimethylformamid (DMF)</td>
<td>Serva</td>
</tr>
<tr>
<td>Dithiothreitol (DTT)</td>
<td>ICN</td>
</tr>
<tr>
<td>1 kb-DNA-Leiter</td>
<td>Genecraft</td>
</tr>
<tr>
<td>EcoRI (G↓AATTTC)</td>
<td>Roche (Boehringer Mannheim)</td>
</tr>
<tr>
<td>Substances</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
</tr>
<tr>
<td>Ethyldiamintetraessigsäure (EDTA)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Essigsäure („Eisessig“)</td>
<td>Merck</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Riedel-de Haën</td>
</tr>
<tr>
<td>Ethidiumbromid (EtBr)</td>
<td>Serva</td>
</tr>
<tr>
<td>GenElute™</td>
<td>Sigma</td>
</tr>
<tr>
<td>Glucose</td>
<td>Merck</td>
</tr>
<tr>
<td>HCl</td>
<td>Merck</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>Sigma</td>
</tr>
<tr>
<td>Hexadecyltrimethylammoniumbromid (CTAB)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Isoamylalkohol</td>
<td>Merck</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Merck</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Serva</td>
</tr>
<tr>
<td>Ladepuffer Typ III</td>
<td>BioRad</td>
</tr>
<tr>
<td>Low-Range I DNA Molecular Marker</td>
<td>Amresco</td>
</tr>
<tr>
<td>Magnesiumchlorid (MgCl₂)</td>
<td>Biomedica</td>
</tr>
<tr>
<td>2-ß Mercaptoethanol</td>
<td>Sigma</td>
</tr>
<tr>
<td>Mineral Öl</td>
<td>Sigma</td>
</tr>
<tr>
<td>Natriumacetat (Na-Acetat)</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumchlorid (NaCl)</td>
<td>Merck</td>
</tr>
<tr>
<td>Natriumdodecylsulfat (SDS)</td>
<td>Sigma</td>
</tr>
<tr>
<td>Natriumhydroxid (NaOH)</td>
<td>Merck</td>
</tr>
<tr>
<td>Pepton, trypäsch verdaut</td>
<td>Merck</td>
</tr>
<tr>
<td>Phenol</td>
<td>Roth</td>
</tr>
<tr>
<td>Polyethylenglycol</td>
<td>Fluka</td>
</tr>
<tr>
<td>Primer</td>
<td>VBC Genomics Bioscience Research GmbH</td>
</tr>
<tr>
<td>Proteinase K</td>
<td>Roche</td>
</tr>
<tr>
<td>QIAquick</td>
<td>Qiagen</td>
</tr>
<tr>
<td>RNase A</td>
<td>Roche oder Biomedica</td>
</tr>
<tr>
<td>SeaKem Agarose</td>
<td>FMC</td>
</tr>
<tr>
<td>TOPO TA Cloning® Kit</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Taq DNA Polymerase + 10x Puffer</td>
<td>BioTherm™ (Genecraft)</td>
</tr>
<tr>
<td>Tris-Base (Trizma)</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
V.2. Verzeichnisse

V.2.1. Zitierte Literatur

DE RUUK, P. & DE WACHTER, R. 1993. DCSE, an interactive tool for sequence alignment and secondary

Subunit Ribosomal RNA database.

Analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.

Phylogeny of Mollusca.

Massachusetts, 169-203.

Biotechniques, 10(4), 506-513.

Molecular Biology and Evolution, 13, 1306-1317.

Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA.

Nucleic Acids Research, 28(23), 4698-4708.

The European Large Subunit Ribosomal RNA database.

Nucleic Acids Research, 29(1), 175-177.
V.2.2. Verwendete Abkürzungen

SI-Einheiten sind in dieser Auflistung nicht angeführt.

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenin</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicilin</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>bp (kb)</td>
<td>Basenpaare (Kilobasenpaare)</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>C</td>
<td>Cytosin</td>
</tr>
<tr>
<td>ca.</td>
<td>cirka, ungefähr</td>
</tr>
<tr>
<td>cf.</td>
<td>lat. confer: vergleiche</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>CI</td>
<td>Consistency-Index</td>
</tr>
<tr>
<td>CTAB</td>
<td>Hexadecyltrimethylammoniumbromid</td>
</tr>
<tr>
<td>D</td>
<td>Domäne</td>
</tr>
<tr>
<td>d.h.</td>
<td>das heißt</td>
</tr>
<tr>
<td>dATP</td>
<td>2'-Deoxyadenosin-5'-triphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>2'-Deoxycytidin-5'-triphosphat</td>
</tr>
<tr>
<td>Dev</td>
<td>Devon</td>
</tr>
<tr>
<td>dGTP</td>
<td>2'-Deoxyguanosin-5'-triphosphat</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamid</td>
</tr>
<tr>
<td>DNA (DNS)</td>
<td>Desoxyribonucleic Acid (Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>dNTP</td>
<td>2'-Deoxynukleosid-5'-triphosphat</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>dTTP</td>
<td>2'-Deoxythymidin-5'-triphosphat</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen-diamintetraessigsäure</td>
</tr>
<tr>
<td>emend.</td>
<td>lat. emendatum: geändert</td>
</tr>
<tr>
<td>et al.</td>
<td>lat: et aliter: und andere</td>
</tr>
<tr>
<td>ET</td>
<td>Ägypten</td>
</tr>
<tr>
<td>EtBr</td>
<td>Etidiumbromid</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol (Äthanol), Ethylalkohol (Äthylalkohol)</td>
</tr>
<tr>
<td>G</td>
<td>Guanin</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloridsäure</td>
</tr>
<tr>
<td>HI</td>
<td>Homoplasie-Index</td>
</tr>
<tr>
<td>HR</td>
<td>Kroatien</td>
</tr>
<tr>
<td>i.e.S.</td>
<td>im engeren Sinne</td>
</tr>
<tr>
<td>i.w.S.</td>
<td>im weiteren Sinne</td>
</tr>
</tbody>
</table>
Um die berechneten Indizes für die Robustheit der Knoten bzw. Äste der ermittelten phylogenetischen Bäume (Kapitel III) anschaulicher darzustellen, wurde für die Bäume in den Abbildungen 24a, sowie 27 und 29 nachstehendes Farbschema verwendet.

<table>
<thead>
<tr>
<th>Bootstrap / Puzzle Decay</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100 %</td>
</tr>
<tr>
<td>70 - 89 %</td>
</tr>
<tr>
<td>50 - 69 %</td>
</tr>
<tr>
<td>25 - 49 %</td>
</tr>
<tr>
<td>0 - 24 %</td>
</tr>
</tbody>
</table>
V.2.3. Verzeichnis der Abbildungen und Tabellen

Abbildungen im Text

Abb. 1 Die Klassen der Mollusca in schematisierter Darstellung ... 9
Abb. 2 Phylogenie der rezenten Mollusca ... 11
Abb. 3 Mediosagittalschnitt von Mytilus edulis (Miesmuschel) .. 13
Abb. 4 Kiemen-Typen bei den Bivalvia .. 17
Abb. 5 Beschriebene Scharniertypen (Schloßränder) bei den Bivalvia 19
Abb. 6 Radiationen der Bivalvia im Kambrium ... 24
Abb. 7 Radiationen der Autobranchia .. 25
Abb. 8 Sechs Hypothesen zur Phylogenie der Pteriomorpha im Vergleich 28
Abb. 9 Organisation und Struktur der Ribosomen von Eukaryonten 29
Abb. 10 Organisation des ribosomalen Gen-Clusters bei Eukaryonten 30
Abb. 11 Sekundärstruktur der 18S rDNA des Plattwurmes Calicophoron calicophoron 31
Abb. 12 Sekundärstruktur der 28S rDNA des Hefepilzes Saccharomyces cerevisiae 32
Abb. 13 Cladogramm der Familien- und Über-Familien der Pteriomorpha 33
Abb. 14 Sammelorte der untersuchten Taxa ... 36
Abb. 15 Schalen von einigen untersuchten Pteriomorpha ... 37
Abb. 16 Extrahierte genomische DNA ... 40
Abb. 17 PCR-Produkte der vollständigen 18S rDNA .. 42
Abb. 18 Strategie der 18S rDNA nested PCR ... 42
Abb. 19 18S rDNA PCR-Produkte 1 und 2 .. 44
Abb. 20 Coamplifikate bei der 28S rDNA PCR .. 46
Abb. 21 pCR® 2.1 TOPO Vektor .. 47
Abb. 22 Restriktionsanalyse der Plasmide mit EcoRI .. 50
Abb. 23 „Strict Consensus“-Baum des 18S rDNA-Datensatzes plus Indizes 63
Abb. 24a ML-Baum des 18S rDNA-Datensatzes plus Indizes .. 64
Abb. 24b Detailansicht für die Pteriomorpha des ML-Baumes aus Abb. 24a 66
Abb. 25 ML-Baum des 18S rDNA-Datensatzes .. 67
Abb. 26 „Strict Consensus“-Baum des 28S rDNA-Datensatzes plus Indizes 71
Abb. 27 ML-Baum des 28S rDNA-Datensatzes plus Indizes .. 72
Abb. 28 „Strict Consensus“-Baum des 18S+28S rDNA-Datensatzes plus Indizes 76
Abb. 29 ML-Baum des 18S+28S rDNA-Datensatzes plus Indizes .. 77
Abb. 30 Detailansicht für die Heteroconchia aus den Abb. 23 und 25 81
Abb. 31 „Strict Consensus“-Baum des aktualisierten 28S rDNA-Datensatzes 84
Abb. 32 Relative Rate Test für vollständige 18S rDNA-Sequenzen .. 88
Abb. 33 Relative Rate Test für 18S und 28S rDNA-Sequenzen ... 88
Abb. 34 Evolutive Zeitfenster der verwendeten molekularen Marker 90
Abb. 35 Hypothesen zur Phylogenie der Pteriomorpha im Vergleich 91
Abb. 36 Phylogenie der Autobranchia ... 91

Abbildungen der Zwischenblätter

Einleitung: Cartoon von Daryl Van Benschoten .. 8
Material und Methoden: Cartoon unter www.promega.com 35
Diskussion: Cartoon unter www.univie.ac.at/zoologie .. 78
Anhang: Photos privat ... 93

Tabellen

Tab. 1 Die erdgeschichtlichen Zeitalter im Überblick .. 25
Tab. 2 Untersuchte Innen- und Außengruppen im Überblick 37
Tab. 3 Untersuchte Pteriomorpha mit Erstbeschreibung und Sammelort 38
Tab. 4 Untersuchte Außengruppen mit Erstbeschreibung und Sammelort 39
Tab. 5 18S rDNA-Datensatz .. 53
Tab. 6 28S rDNA-Datensatz .. 56
Tab. 7 18S+28S rDNA-Datensatz ... 57
Tab. 8 Längen der erhaltenen 18S rDNA-Sequenzen .. 61
Tab. 9 Längen der erhaltenen 28S rDNA-Sequenzen .. 68
Tab. 10 Längen der erhaltenen 18S+28S rDNA-Sequenzen 73
Tab. 11 Verteilung der ribosomalen Sequenzen in den Datenbanken 86
Tab. 12 Aktualisierter 28S rDNA-Datensatz ... 106
Tab. 13 Auflistung der sequenzierten Taxa ... 108
V.2.4. 28S rDNA-Dataset (aktualisiert)

<table>
<thead>
<tr>
<th>Systematische Position</th>
<th>Art, Erstbeschreibung</th>
<th>Sammelort</th>
<th>DDBJ/EMBL/GENBANK Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pteriomorpha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcoidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcidae</td>
<td>Arca noae Linné, 1758 ‡</td>
<td>AJ307563</td>
<td></td>
</tr>
<tr>
<td>Glycymerididae</td>
<td>Acar plicata (Dillwyn, 1817) §</td>
<td>AJ307533</td>
<td></td>
</tr>
<tr>
<td>Mytiloidea</td>
<td>Glycymeris pedunculus (Linné, 1758) §</td>
<td>AJ307534</td>
<td></td>
</tr>
<tr>
<td>Modiolinidae</td>
<td>Modiolus auriculatus Krauss, 1848 §</td>
<td>AJ307537</td>
<td></td>
</tr>
<tr>
<td>Mytilinidae</td>
<td>Brachidontes variabilis (Krauss, 1848) §</td>
<td>AJ307536</td>
<td></td>
</tr>
<tr>
<td>Septiferidae</td>
<td>Septifer cf. bilocularis (Linné, 1758) §</td>
<td>AJ307535</td>
<td></td>
</tr>
<tr>
<td>Lithophaginae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinnidea</td>
<td>Gregariella coarctata (Carpenter, 1856) &</td>
<td>AJ307538</td>
<td></td>
</tr>
<tr>
<td>Pteridea</td>
<td>Pteria macropera (Lamarck, 1819) §</td>
<td>AJ307548</td>
<td></td>
</tr>
<tr>
<td>Pteriidae</td>
<td>Electromon alacorvi (Dillwyn, 1817) §</td>
<td>AJ307549</td>
<td></td>
</tr>
<tr>
<td>Isognomonidae</td>
<td>Isognomon legumen (Gmelin, 1791) §</td>
<td>AJ307551</td>
<td></td>
</tr>
<tr>
<td>Malleidae</td>
<td>Malvifundus regulatus (Forsskal, 1775) §</td>
<td>AJ307547</td>
<td></td>
</tr>
<tr>
<td>Ostreidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gryphaeidae</td>
<td>Hyotissa hyotis (Linné, 1758)</td>
<td>AF137036</td>
<td></td>
</tr>
<tr>
<td>Ostreidae</td>
<td>Hyotissa numisma (Lamarck, 1819)</td>
<td>AF137035</td>
<td></td>
</tr>
<tr>
<td>Ostreinae</td>
<td>Neopycnodonte cochlear (Polin, 1795)</td>
<td>AF137034</td>
<td></td>
</tr>
<tr>
<td>Lophinae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crassostreinae</td>
<td>Crassostrea ariakensis (Fujita, 1913)</td>
<td>AF137052</td>
<td></td>
</tr>
<tr>
<td>Anomioidea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomiidae</td>
<td>Anomia ephippium Linné, 1758 ‡</td>
<td>AJ307556</td>
<td></td>
</tr>
<tr>
<td>Dimyidae</td>
<td>Pododesmus caelata (Reeve, 1859) §</td>
<td>AJ307555</td>
<td></td>
</tr>
<tr>
<td>Dimyaria maoria (Powell, 1937) *</td>
<td>AJ307541</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca) – 107

Plicatuloidea	Plicatulidae	*Plicatula plicata* (Linné 1767) ‡ AJ307539
Limoidea	Limidae	*Lima lima* (Linné, 1758) ‡ AJ307558
		Ctenoides annulatus (Lamarck, 1819) ‡ AJ307550
Plicatuloidea	Plicatulidae	*Plicatula plicata* (Linné 1767) ‡ AJ307539
Limoidea	Limidae	*Lima lima* (Linné, 1758) ‡ AJ307558
		Ctenoides annulatus (Lamarck, 1819) ‡ AJ307550
Plicatuloidea	Plicatulidae	*Plicatula plicata* (Linné 1767) ‡ AJ307539
Limoidea	Limidae	*Lima lima* (Linné, 1758) ‡ AJ307558
		Ctenoides annulatus (Lamarck, 1819) ‡ AJ307550
Pectinoidea	Spondylidae	*Spondylus crassisquamatus* Lamarck, 1819 ‡ AJ307542
		Spondylus hystrix Röding, 1798 ‡ AJ307561
		Flexopecten glaber (Linné, 1758) ‡ AJ307545
		Aequipecten opercularis (Linné, 1758) ‡ AJ307543
		Mimachlamys varia (Linné, 1758) ‡ AJ307546
		Excillichlamys spectabilis (Reeve, 1853) ‡ AJ307544
		Pseud spondyloideum (Gmelin, 1791) ‡ AJ311560
Protobranchia	Solemyida	*Solemya togata* (Poli, 1795) ‡ AJ307552
	Nuculanidae	*Nuculana pella* (Linné, 1767) ‡ AJ307553
		Ctena divergens (Philippi, 1850) ‡ AJ307559
		Diplodonta cf. *subrotundata* Issel, 1869 ‡ AJ307554
		Corbicula fluminea (Müller, 1774) AF131009
		Mercenaria mercenaria (Linné, 1758) AF131019
		Macoma balthica (Linné, 1758) AF131004
		Sinonovacula constricta (Lamarck, 1818) AF131005
		Dreissena polymorpha (Pallas, 1771) AF131007
		Dreissena bugensis (Andrusov, 1897) AF131008
		Corbicula fluminea (Müller, 1774) AF131009
		Polymesoda caroliniana (Bosc, 1801) AF131011
		Neocorbicula limosa (Maton, 1809) AF131012
		Spaerium corneum (Linné, 1758) AF131013
		Pisidium dubium (Say, 1817) AF131014
		Pisidium sterckianum Pilsbry, 1897 AF131015
		Musculium lacustre (Müller, 1774) AF131016
		Eupera platensis Doello Jurado, 1921 AF131017
		Astrea castanea (Say, 1822) AF131001
		Mactridae
		Rangia cuneata (Sowerby, 1831) AF131002
		Mulinia lateralis (Say, 1822) AF131003

| Tabelle 12: Taxa, die in einer aktualisierten phylogenetischen Analyse der 28S rDNA verwendet wurden (siehe Kapitel IV.1.), mit Erstbeschreibung, Sammelort und jener Accession Number, mit der sie in der Embl/Genbank hinterlegt sind. Taxa, die im Zuge dieser Arbeit sequenziert wurden, sind fettgedruckt. Fußnoten korrespondieren mit folgenden Sammelorten: *Ägäisches Meer (Griechenland); Trondheim Fjord (Atlantik, Norwegen); Rovinj (Nördliche Adria, Kroatien); Safaga Bay (Rotes Meer, Ägypten); Charleston (Atlantik, USA); National Museum von Neuseeland – NMMZ (Pazifik, Neuseeland); Taboga Island (Golf von Panama, Panama) |
V.2.5. Sequenzierte Taxa

<table>
<thead>
<tr>
<th>Art</th>
<th>18S rDNA</th>
<th>28S rDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acar plicata (Dillwyn, 1817)</td>
<td>AJ389630</td>
<td>AJ307533</td>
</tr>
<tr>
<td>Aequipecten opercularis (Linne, 1758)</td>
<td>AJ310482</td>
<td>AJ307543</td>
</tr>
<tr>
<td>Anomia ephippium Linne, 1758</td>
<td>AJ389661</td>
<td>AJ307556</td>
</tr>
<tr>
<td>Arca noae Linne, 1758</td>
<td>—</td>
<td>AJ307563</td>
</tr>
<tr>
<td>Atrina pectinata Linne, 1767</td>
<td>—</td>
<td>AJ307557</td>
</tr>
<tr>
<td>Brachidonites variabilis (Krauss, 1848)</td>
<td>AJ389643</td>
<td>AJ307536</td>
</tr>
<tr>
<td>Ctenoides annulatus (Lamarck, 1819)</td>
<td>AJ389653</td>
<td>AJ307550</td>
</tr>
<tr>
<td>Dimyaria maoria (Powell, 1937)</td>
<td>—</td>
<td>AJ307541</td>
</tr>
<tr>
<td>Electroma alacorvi (Dillwyn, 1817)</td>
<td>AJ389641</td>
<td>AJ307549</td>
</tr>
<tr>
<td>Excellichlamys spectabilis (Reeve, 1853)</td>
<td>AJ389648</td>
<td>AJ307544</td>
</tr>
<tr>
<td>Flexopecten glaber (Linne, 1758)</td>
<td>AJ389662</td>
<td>AJ307545</td>
</tr>
<tr>
<td>Glycymeris pedunculus (Linne, 1758)</td>
<td>AJ389631</td>
<td>AJ307534</td>
</tr>
<tr>
<td>Gregariella coarctata (Carpenter, 1856)</td>
<td>AJ414641</td>
<td>AJ307538</td>
</tr>
<tr>
<td>Hyotissa cf. hyotis Linne, 1758</td>
<td>AJ389632</td>
<td>—</td>
</tr>
<tr>
<td>Hyotissa cf. numisma Lamarck, 1819</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Isognomon legumen (Gmelin, 1791)</td>
<td>AJ389639</td>
<td>AJ307551</td>
</tr>
<tr>
<td>Lima lima Linne, 1758</td>
<td>AJ389652</td>
<td>AJ307558</td>
</tr>
<tr>
<td>Lopha cristagalli Linne, 1758</td>
<td>AJ389635</td>
<td>—</td>
</tr>
<tr>
<td>Malvifundus regulatus (Forsskal, 1775)</td>
<td>AJ389640</td>
<td>AJ307547</td>
</tr>
<tr>
<td>Mischlams varia Linne, 1758</td>
<td>—</td>
<td>AJ307546</td>
</tr>
<tr>
<td>Modiolus auriculatus Krauss, 1848</td>
<td>AJ389644</td>
<td>AJ307537</td>
</tr>
<tr>
<td>Pedum spondyloideum (Gmelin, 1791)</td>
<td>AJ389649</td>
<td>AJ311560</td>
</tr>
<tr>
<td>Pinctada margaritifera Linne, 1758</td>
<td>AJ389638</td>
<td>—</td>
</tr>
<tr>
<td>Pinna muricata Linne, 1758</td>
<td>AJ389636</td>
<td>AJ307560</td>
</tr>
<tr>
<td>Plicatula plicata Linne, 1767</td>
<td>AJ389651</td>
<td>AJ307539</td>
</tr>
<tr>
<td>Pododesmus caelata (Reeve, 1859)</td>
<td>AJ389650</td>
<td>AJ307555</td>
</tr>
<tr>
<td>Pteria macroptera (Lamarck, 1819)</td>
<td>AJ389637</td>
<td>AJ307548</td>
</tr>
<tr>
<td>Pulvinites exempla (Hadley, 1914)</td>
<td>AJ414640</td>
<td>AJ307540</td>
</tr>
<tr>
<td>Saccostrea cucullata (Born, 1778)</td>
<td>AJ389634</td>
<td>AJ344329</td>
</tr>
<tr>
<td>Septifer cf. bilocularis Linne, 1758</td>
<td>AJ389645</td>
<td>AJ307535</td>
</tr>
<tr>
<td>Spondylus crassissquamatus Lamarck, 1819</td>
<td>AJ389646</td>
<td>AJ307542</td>
</tr>
<tr>
<td>Spondylus hystrich Roding, 1798</td>
<td>AJ389647</td>
<td>AJ307561</td>
</tr>
<tr>
<td>Vulsella sp.</td>
<td>AJ389642</td>
<td>AJ307562</td>
</tr>
<tr>
<td>Nuculana pella Linne, 1767</td>
<td>AJ389665</td>
<td>AJ307553</td>
</tr>
<tr>
<td>Solemya logata (Poli, 1795)</td>
<td>AJ389658</td>
<td>AJ307552</td>
</tr>
<tr>
<td>Yoldiella nana (Sars M., 1865)</td>
<td>AJ389659</td>
<td>—</td>
</tr>
<tr>
<td>Cardiolucina semperiana Issel, 1869</td>
<td>AJ389655</td>
<td>—</td>
</tr>
<tr>
<td>Crena divergens (Philippi, 1850)</td>
<td>AJ389656</td>
<td>AJ307559</td>
</tr>
<tr>
<td>Diplodonta cf. subrotunda Issel, 1869</td>
<td>AJ389654</td>
<td>AJ307554</td>
</tr>
<tr>
<td>Tropidomya abbreviata (Forbes, 1843)</td>
<td>AJ389657</td>
<td>—</td>
</tr>
<tr>
<td>Antalis inaequicoastata (Dautzenberg, 1891)</td>
<td>AJ389660</td>
<td>—</td>
</tr>
<tr>
<td>Antalis perinovuluta (Ludbrook, 1954)</td>
<td>AJ389663</td>
<td>—</td>
</tr>
<tr>
<td>Sipunculida indet.</td>
<td>AJ389664</td>
<td>—</td>
</tr>
</tbody>
</table>

Tabelle 13: Alphabetische Auflistung aller Taxa, die im Zuge dieser Arbeit sequenziert wurden. Die Zugriffsnummern (Accession Numbers - DDBJ/Embl/GenBank) für die 18S und 28S rDNA Sequenzen sind ebenfalls angeführt. Die Fußnoten korrespondieren mit folgenden Sammelorten: § Ägäisches Meer (Griechenland); † Trondheim Fjord (Atlantik, Norwegen); ‡ Rovinj (Nördliche Adria, Kroatien); † Safaga Bay (Rotes Meer, Ägypten); ‡ Charleston (Atlantik, USA); * National Museum von Neuseeland – NMMZ (Pazifik, Neuseeland)
V.2.6. Bildtafeln der sequenzierten Pteriomorpha

Tafel 1
Mytiloidea, Arcoidea, Plicatuloidea
110

Tafel 2
Pinnoidea, Anomioidea
111

Tafel 3
Pterioidea
112

Tafel 4
Ostreoida, Limoidea
113

Tafel 5
Pectinoidea
114

Die nachstehenden Abbildungen wurden folgenden Quellen entnommen:
ABBOTT & DANCE 1990 (§)
OLIVER 1992 (*)
http://shell.kwansei.ac.jp (*)
Tafel II

Pinnoidea

Atrina pectinata*
(184,0mm)

Pinna muricata*
(161,0mm)

Anomioidea

Anomia ephippium$
(60mm)

Pododesmus caelata*
(19,8mm)
Tafel III

Pterioidea

Isognomon legumen
(68,9mm)

Electroma alacorvi
(53,3mm)

Pinctada margaritifera
(98,0mm)

Pteria macroptera
(77,8mm)

Malvifundus regulatus
(64,1mm)

Vulsella vulsella
(36,8mm)
Tafel IV

Ostreoidea

Hyotissa cf. numisma* (56,5mm)
Lopha cristagalli* (109,6/68,5mm)

Hyotissa cf. hyotis* (74,3mm)

Saccostrea cucullata* (75,8mm)

Limoidea

Ctenoides annulatus* (27,2mm)

Lima lima* (61,4mm)
Tafel V

Pectinoidea

Spondylus crassisquamatus
(69,2mm)

Spondylus hystrix
(33,9mm)

Excellichlamys spectabilis
(30,8mm)

Pedum spondyloideum
(65,5mm)

Aequipecten opercularis
(70mm)

Mimachlamys varia
(60mm)

Flexopecten glaber
(40mm)
V.3. Curriculum vitae

Name: Sabine Elisabeth Hammer
Date of birth: May 14, 1968
Place of birth: Vienna, Austria
Nationality: Austrian
Marital status: single
Address: Ullmannstraße 53/9, 1150 Vienna, 0676/3121860
Email: sabine.hammer@vu-wien.ac.at
Homepage: http://mailbox.univie.ac.at/~hammers5/

Education
1974-1978 Primary School, Vienna, Austria
1978-1986 Gymnasium (emphasis on Mathematics and Natural Sciences), Vienna
1986-1989 Studies of Natural Sciences, majored in Biochemistry at the Vienna University
1989-1996 Studies of Natural Sciences, majored in Molecular Genetics – Studium Irregulare (Vienna University, Austria)
1997-2001 Ph.D. studies at the Institute of Zoology, Vienna University
Thesis: Molekulare Phylogenie der pteriomorphen Bivalvia (Mollusca)

Examinations and degrees
1986 Matura, Vienna, Austria
1992 Pre-Diploma in Molecular Genetics (Studium irregulare)
1996 Diploma in Molecular Genetics (Mag.rer.nat., Vienna University, Austria)
Thesis: Molekulargenetische Variabilität und Differenzierung in der Gattung Rupicapra (Artiodactyla, Bovidae)

Appointments
1995 Visiting Diploma student at the Institute of Domestication Research (University of Kiel, Germany)
1996-1997 Research scientist at the Research Institute of Wildlife Ecology (University of Veterinary Medicine, Vienna)
1998-2000 Research assistant at the Department of Systematic Zoology and Developmental History (Institute of Zoology, Vienna University, Austria)
1999 Tutorial in the course „Mikrobielle Ökologie: Molekulare Ökologie“ (Institute of Zoology, Vienna University, Austria)
2000 Tutorial in the course „Einführung in molekularbiologische Arbeitstechniken“ (Institute of Zoology, Vienna University, Austria)
2000-2001 Employed at Sigma-Aldrich Austria in the Life Sciences division (Technical Service Support and Product Management)
Since 2001 Research scientist at the Research Institute of Wildlife Ecology (University of Veterinary Medicine, Vienna)
Publications

Peer-reviewed publications

Manuscripts

SCHASCHL, H., KAULFUS, D., HAMMER, S. E., SUCHENTRUNK, F. Contrasting patterns of spatial differentiation of mitochondrial and nuclear gene pools in Chamois (Rupicapra rupicapra) from the Eastern Alps. (submitted)

SUCHENTRUNK, F., HAMMER, S. E., NADLINGER, C., NADLINGER, K. F., ALKON, P. U., SCHASCHL, H. Molecular phylogenetic relationships among European brown hares (Lepus europaeus) and Israeli hares (Lepus sp.) contradict external body characteristics. (in prep)

HAMMER, S. E., LORENZINI, R., HERRERO, J., PÉREZ-BARBERIA, F. J., JURDÍKOVÁ N., SUCHENTRUNK, F. Molecular systematics of the genus Rupicapra. (in prep)

Oral Presentations

HAMMER, S. & SUCHENTRUNK, F. 1996. PCR techniques and application among Mustelids. Mustelid Colloquium, Kollm, Germany

JURDÍKOVÁ N. & HAMMER, S. 2000. Is the Tatra chamois unique?
STEINER, G. & HAMMER, S. 2000. Phylogeny of pteriomorph Bivalvia inferred from 18S, 28S rDNA, and morphological data. Understanding Molluscan Biodiversity in our Region into the 21st Century, Sydney, Australia

HAMMER, S. & STEINER, G. 2001. Phylogeny of pteriomorph Bivalvia inferred from 18S, 28S rDNA, and morphological data. 14th World Congress of Malacology, Vienna, Austria

Poster Presentations

SUCHENTRUNK, F., SCHASCHL, H. & HAMMER, S. 1999. Spatial differentiation of mitochondrial gene pools of eastern Alpine chamois (Rupicapra rupicapra) as revealed by RFLP analysis. 73rd Annual Meeting of the Deutsche Gesellschaft für Säugetierkunde, Bad Dürkheim, Germany

International Conferences attended

1994
♦ 2nd International Symposium on Ecological Genetics in Mammals, Lodz, Poland

1996
♦ Mustelid Colloquium, Kollm, Germany
♦ 3rd International Symposium on Ecological Genetics in Mammals, Kiel, Germany
♦ EU-Meeting „Molecular Tools for Biodiversity“, Vienna, Austria

1997
♦ 2nd World Conference on Mountain Ungulates, Saint-Vincent, Italy

1998
♦ 13th World Congress of Malacology, Washington, D.C., USA
♦ 4th International Symposium on Ecological Genetics in Mammals, Vienna, Austria

1999
♦ 32nd Annual Meeting of the Population Genetics Group, Cambridge, UK
♦ 92nd Annual Meeting of the Deutsche Zoologische Gesellschaft, Innsbruck, Austria
♦ Phylogenetisches Symposium – Homologie und Konvergenzen, Vienna, Austria
♦ Symposium on the Biology and Evolution of the Bivalvia, Cambridge, UK

2001
♦ Symposium „Decline of the European hares: an interdisciplinary European research task“, Berlin, Germany
♦ 14th World Congress of Malacology, Vienna, Austria
♦ Hares as umbrella species to evaluate European Agricultural Policies – Workshop for launching an EC research network, Vienna, Austria
♦ Life Sciences 2001 – Annual Joint Meeting of the ÖGBM, ÖGGGT, and ÖGBT, Vienna, Austria
Molecular Phylogeny of Bivalvia (Mollusca) inferred from 18S rDNA sequences

G. Steiner¹, S. Hammer¹

¹Institut für Zoologie, Universität Wien, Austria

Morphology based phylogenetic studies on higher bivalve taxa are hampered by multiple cases of parallel evolution in several organ systems (e.g., hinge-ligament system, gill structure, stomach differentiation). The use of 18S rDNA sequences for phylogenetic inference, therefore, seems promising, because ribosomal genes are unlikely to show convergencies due to adaptation to similar ecological niches. We obtained 34 complete bivalve sequences and aligned them to 87 complete or partial molluscan 18S rDNA sequences previously published (Bivalvia: 59, Polyplacophora: 4, Caudofoveata: 1, Scaphopoda: 4, Cephalopoda: 1, Gastropoda: 18). The data matrix was analysed using parsimony, distance and maximum likelihood algorithms and spectral analysis. The most important results are: 1) Bivalve monophyly is not supported due to Polyplacophora emerging between Pteriomorpha and Heterodonta. 2) Protophthorhina appear as sister group of either Polyplacophora or Pteriomorpha. 3) Pteriomorpha and Heterodonta are monophyletic. 4) The Unionidae are a sister group to the Heterodonta. 5) Within the Heterodonta, monophyly of the orders Myoida and Veneroida is not supported. The families Mactridae, Lucinidae, and Galeommatidae appear monophyletic. The Lucinidae and Galeommatidae form one of the basal clades of the Heterodonta. Tridacna sp. and Cuspidaria abbreviata join at the base of the heterodont clade with very long branches. 6) The unresolved branching order at the base of the pteriomorph clade points to a rapid radiation of the Mytiloidea, Arcoidea, Pinnidae, and a clade containing Pteridae and Ostreoidae. The clade of Plicatula plicata and the Anomiidae form a sister group to the Limidae and the Pectinoida. The family Pectinidae is well supported, although the resolution within the group is low.

In general, the current data set provides higher support for family-level taxa in the Pteriomorpha than in the Heterodonta. This may be due to the higher variation and substitution rates among the Heterodonta. The phylogenetic results based on the 18S rDNA sequences are discussed in relation to the current morphological concepts of bivalve evolution.

This study is supported by the “Fonds zur Förderung der wissenschaftlichen Forschung”, Austria (project no. P11846-GEN).

Zoology 102 (1999) · Supplement II (DZG 92.1)

Abstracts von Kongressvorträgen

26.-30. Juli 1998:
World Congress of Malacology, Washington, D.C., USA

Preliminary Results of Molecular Phylogenetic Studies on Pteriomorph Bivalvia

Sabine Hammer & Gerhard Steiner
Institute of Zoology, University of Vienna,
Althanstrasse 14, A - 1090 Vienna, Austria
e-mail: sabine.hammer@univie.ac.at, gerhard.steiner@univie.ac.at

Bivalvia present particularly nasty problems to students of their phylogeny. Morphologists are stunned by the numerous cases of parallel evolution in various organ systems such as shell shape, hinge dentition, mantle siphons, gills, and stomach differentiation. High hopes are, therefore, put into the molecular approach. Previous molecular phylogenetic studies using the 18S rDNA gene produced diphyletic Bivalvia, separated by Polyplacophora and/or Gastropoda. The objective of this study is to investigate phylogenetic relationships between the major groups of the subclass Pteriomorpha, the Arcoidea, Limidea, Mytiloidea, Ostreoidea, Pectinoidea, Pinnoidea, and Pteroidea, based on sequence divergence of 18S rDNA and a partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. As outgroups serve representatives of the bivalve subclasses Eulamellibranchia (e.g. Lucinoidea) and Protobranchia as well as Scaphopoda. The data are analysed with parsimony and distance methods, maximum likelihood and spectral analysis with separate and combined data. Preliminary results obtained from seven individuals of pteriomorph Bivalvia show that both, 18S rDNA and COI sequences, do not support bivalve monophyly. While 18S rDNA indicates separate origins of Eulamellibranchia and Pteriomorpha, the COI sequences support their monophyly. A single species of the Limoidea, however, clusters with a gastropod outgroup. Within the Pteriomorpha, the basal position of Mytiloidea in the 18S rDNA tree is in agreement with morphological results. The preliminary COI trees have a pectinid as basal branch.

5.-8. Jannuar 1999:
32nd Annual Meeting of the Population Genetics Group, Cambridge, UK

Preliminary Results of Molecular Phylogenetic Studies on Pteriomorph Bivalvia

Sabine Hammer & Gerhard Steiner
Institute of Zoology, University of Vienna,
Althanstrasse 14, A - 1090 Vienna, Austria
e-mail: sabine.hammer@univie.ac.at, gerhard.steiner@univie.ac.at

Among the molluscs, the Bivalves represent a class with both, an astonishing diversity and a marked set of ‘Lebensform-types’. Eversince scientists have drawn attention to the classification and phylogeny of Bivalves, they could refer to the huge number of fossil records and morphological characters. Eventually it became apparent that parallel evolution in various organ systems due to repeated adaptive radiation into similar ecological niches is a key feature of bivalve phylogeny. The objective of this study is to investigate phylogenetic relationships between the major groups of the subclass Pteriomorpha, the Arcoidea, Limidea, Mytiloidea, Ostreoidea, Pectinoidea, Pinnoidea, and Pteroidea, based on sequence divergence of 18S rDNA and a partial sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. As outgroups serve representatives of the bivalve subclasses Eulamellibranchia (e.g. Lucinoidea) and Protobranchia as well as Scaphopoda. The data are analysed with parsimony and distance methods, maximum likelihood and spectral analysis with separate and combined data.
Molecular Phylogeny of Pteriomorph Bivalvia inferred from 18S rDNA sequences

Gerhard Steiner & Sabine Hammer
Institute of Zoology, University of Vienna,
Althanstrasse 14, A - 1090 Vienna, Austria
e-mail: gerhard.steiner@univie.ac.at, sabine.hammer@univie.ac.at

Morphology based phylogenetic studies on higher bivalve taxa are often hampered by multiple cases of parallel evolution in several organ systems (e.g. hinge-ligament system, shell microstructure, gill- and stomach differentiation). The use of the 18S rDNA gene for phylogenetic inference, therefore, seems promising, because it is unlikely to show convergencies due to adaptation to similar ecological niches. 18S rDNA sequence data of 26 pteriomorph and six other bivalve species are presented to assess phylogenetic relationships both among Pteriomorpha and their relationships to other Bivalvia. Trees constructed by Parsimony and Maximum-Likelihood analyses are almost identical. Both Pteriomorpha and Heteroconchia are monophyletic although monophyly of the Autobranchia is not supported. This is probably due to the relatively high overall substitution rate in the Heteroconchia. Monophyletic Protobranchia are the sister group of Pteriomorpha. Low support of the basal pteriomorph branches points to rapid radiation of five major lineages: mytilids, arcids, pinnids, ostreids + pteryids, and a clade containing Plicatula plicata, anomiids, limids and pectinids. Plicatula plicata clusters with anomiids, and limids form the sister group of pectinids. The position of limids, P. plicata, and the diphyly of Pterioidea suggest a re-evaluation of homology decisions in several morphological characters.

Phylogeny of Pteriomorph Bivalvia inferred from 18S, 28S rDNA, and Morphological Data

Gerhard Steiner & Sabine Hammer
Institute of Zoology, University of Vienna,
Althanstrasse 14, A - 1090 Vienna, Austria
e-mail: gerhard.steiner@univie.ac.at, sabine.hammer@univie.ac.at

Phylogenetic studies on the Pteriomorpha, a major division of the Bivalvia with Ordovician origins, produced contradictory results, because of convergent and parallel evolution in numerous morphological characters. In the present study, two ribosomal data sets are used to elucidate pteriomorph relationships with molecular characters, expected to be less prone to convergence due to similar life styles (STEINER & HAMMER 2000). The 18S rDNA data set contains 72 pteriomorph and 28 molluscan outgroup sequences; the 28S rDNA (domains D1-D3) data set contains 33 pteriomorph and 2 protobranch outgroup sequences. The combined data set contains 30 ingroup and 2 outgroup taxa. The morphological data set for family-level taxa has 20 characters mainly taken from WALLER (1998). Parsimony, maximum-likelihood (ML), spectral analysis methods are used for phylogenetic analysis. Branch support is calculated by bootstrap, decay, and puzzle indices. The relative rate test returns significantly lower rates in the 18S rDNA for the Pteriomorpha than for all the other molluscan groups; rates comparison among the pteriomorph families shows higher values for the 28S rDNA, but only moderate correlation between the genes. In general, the branches of family-group taxa have strongest support. The analysis of the 18S data yield 106946 most parsimonious trees (MPT), however, the strict consensus tree shows only a single polytomy for the major groups. The 28S data yield two MPT with the only polytomy being within the Arcoidea. The two genes support similar
topologies differing only in the arrangement of the basal groups Mytilida and Arcoidea. These uncertainties become also apparent in the ML analyses, both in the branching order of these two groups and in very short branch lengths in this area. The most striking discrepancies between the molecular and morphological results concerns the different position of the Limidae and Pinnidae. The unweighted combined analysis yields a single MPT with the same branching order of major groups as in the 28S topology, but with increased branch support. Parallel or convergent evolution of morphological characters is assessed and discussed under the topology of the combined data. Although the morphological character analysis is still at a preliminary stage, the advantages of a combined molecular-morphological analysis are evident by the increased resolution and branch support.

References
Phylogenetic studies on the Pteriomorpha, a major division of the Bivalvia with Ordovician origins, produced contradictory results. This can be attributed mainly to highly convergent and parallel evolution in numerous morphological characters. Here, we use two ribosomal data sets to elucidate pteriomorph relationships with molecular characters, expected to be less prone to convergence due to similar life styles (STEINER & HAMMER 2000). The 18S rDNA data set contains 72 pteriomorph and 28 molluscan outgroup sequences; the 28S rDNA (domains D1-D3) data set contains 33 pteriomorph and 2 protobranch outgroup sequences. The combined data set contains 30 ingroup and 2 outgroup taxa. The morphological data set for family-level taxa has 20 selected characters. Parsimony, maximum-likelihood (ML), spectral analysis methods are used for phylogentic analysis. Branch support is calculated by bootstrap, decay, and puzzle indices.

The relative rate test returns significantly lower rates in the 18S rDNA for the Pteriomorpha than for all the other molluscan groups; rates comparison among the pteriomorph families shows higher values for the 28S rDNA, but only moderate correlation between the genes. In general, the branches of family-group taxa have strongest support. The analysis of the 18S data yield 106946 most parsimonious trees (MPT), however, the strict consensus tree shows only a single polytomy for the major groups. The 28S data yield two MPT with the only polytomy being within the Arcoidea. The two genes support similar topologies differing only in the arrangement of the basal groups Mytilida and Arcoidea. These uncertainties become also apparent in the ML analyses, both in the branching order of these two groups and in very short branch lengths in this area. The most striking discrepancies between the molecular and morphological results concerns the different position of the Limidae and Pinnidae. The unweighted combined analysis yields a single MPT with the same branching order of major groups as in the 28S topology, but with increased branch support.

Parallel or convergent evolution of morphological characters is assessed and discussed under the topology of the combined data. The pteriomorph data set is an example for the advantages of a combined molecular-morphological analysis yielding increased resolution and branch support.

References

You’re led through your lifetime by the inner learning creature, the playful spiritual being that is your real self.

Don’t turn away from possible futures before you’re certain you don’t have anything to learn from them.

You’re always free to change your mind and choose a different future, or a different past.

Richard Bach (Illusions)